Тема . ММО (Московская математическая олимпиада)

Планиметрия на ММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85482

В остроугольном треугольнике ABC  высоты AH  ,BH
   A   B  и CH
   C  пересекаются в точке H  . Через точки, в которых окружность радиуса HHA  с центром H  пересекает отрезки BH  и CH  , проведена прямая ℓA  . Аналогично проведены прямые ℓB  и ℓC  . Докажите, что точка пересечения высот треугольника, образованного прямыми ℓA,ℓB,ℓC  , совпадает с центром окружности, вписанной в треугольник ABC  .

Источники: ММО - 2024, второй день, 11.4 (см. mmo.mccme.ru)

Подсказки к задаче

Подсказка 1

Нарисуйте большой и правильный чертёж к задаче! Линейкой и циркулем. Желательно 2 раза, в разных конфигурациях.

Подсказка 2

Если вы это сделали, то увидите, что прямые l_B и l_C подозрительным образом пересекаются на биссектрисе угла A. Аналогично для других пар. Попробуем это доказать?)

Подсказка 3

Пусть l_B и l_C пересекают отрезки СH и BH в точках Q и P соответственно. l_B и l_C пересекаются в точке X. ∠BAC = 2a, ∠CBA = 2b, ∠ACB = 2c. Несложным счётом углов докажите, что ∠H_CHP = ∠N_BHQ = 2a. Какой вывод тогда можно сделать?

Подсказка 4

Так как H_CH = HP (по условию), то ∠H_CPH = 90 - a, аналогично ∠H_BQH = 90 - a. Значит, PH_CH_BQ — вписанный. Теперь пусть l_B, l_C пересекают AH в точках V и U соответственно. Что теперь можно сказать про треугольники PUH и QHV?

Подсказка 5

Верно! Они равнобедренные. Несложным счётом углов докажите, что ∠XPH = c, ∠XPH_C = b, а также, что ∠H_CQX = b. Не забывайте, что a+b+c=90. Что мы тогда получаем?

Подсказка 6

Именно! Мы получаем, что X лежит на окружности H_CPQ, то есть на окружности PH_CH_BQ. Вновь посчитав углы, докажите, что H_CX и H_BX — биссектрисы углов ∠AH_CH_B и AH_BH_C. Что из этого следует?

Подсказка 7

То, что AX — биссектриса угла H_CAH_B, то есть AX — биссектриса ∠BAC. Мы доказали, что l_B и l_C пересекаются на биссектрисе ∠BAC. Аналогично докажем это для других пар. Осталось доказать, что XI ⊥ RS, где R, S - точки пересечения l_A с отрезками BH и CH соответственно. Но X лежит на AI, где I — центр вписанной окружности треугольника ABC. Значит нужно доказать, что AI ⊥ RS, потом аналогично докажем это для других пар и задача убита. Итак, приступим. Какой вывод можно сделать про RS в треугольнике RHS? Не забывайте, мы сейчас думаем о биссектрисах.

Подсказка 8

Действительно, RS ⊥ биссектрисе ∠RHS, пусть это прямая p_A. Тогда перпендикулярность AI и RS равносильна параллельности p_A и AI. Оставим это несложное утверждение вам) Успехов!

Показать доказательство

Покажем, что биссектрисы треугольника ABC  содержат высоты треугольника, образованного прямыми ℓ ,ℓ ,ℓ
 A B  C  . Для этого докажем, что точка пересечения прямых ℓB,ℓC  лежит на биссектрисе угла ∠BAC  , а прямая ℓA  перпендикулярна этой биссектрисе.

_________________________________________________________________________________________________________________________________________________________________________________

Докажем, что прямая ℓA  перпендикулярна биссектрисе угла ∠BAC  .

Пусть R  и S  - это точки пересечения окружности с центром в H  радиуса HHA  с отрезками BH  и CH  соответственно. Тогда треугольник RHS  - равнобедренный с основанием RS  , поэтому прямая RS  (она же ℓA  ) перпендикулярна прямой pA  , содержащей биссектрису угла ∠BHC  . Поэтому достаточно доказать, что прямая pA  параллельна биссектрисе угла ∠BAC  .

PIC

Пусть MA  и NA  — середины дуг HCHHB  и ⌣ HBAHC  окружности ωA  , построенной на AH  как на диаметре. Из свойств вписанных углов следует, что AMA  — биссектриса ∠BAC,HNA  — биссектриса ∠HCHHB  . Заметим также, что MANA  - диаметр окружности ωA  . Значит, отрезки MANA  и AH  пересекаются в центре окружности ωA  как её диаметры и делятся точкой пересечения пополам. То есть четырёхугольник AMAHNA  − параллелограмм (и даже прямоугольник, поскольку его углы - вписанные, опирающиеся на диаметры окружности ωA  , то есть прямые). В частности, AMA ∥HNA  , что и требовалось.

_________________________________________________________________________________________________________________________________________________________________________________

Докажем, что прямые ℓ
B  и ℓ
C  пересекаются на биссектрисе угла ∠BAC  .

Пусть прямые ℓ
B  и ℓ
C  пересекают отрезки BH, CH  в точках P  и Q  соответственно, а точку пересечения ℓ
B  и ℓ
C  обозначим через X  . Также обозначим углы ∠A,∠B  и ∠C  треугольника ABC  через 2α,2β  и 2γ  соответственно.

PIC

Поскольку HP = HHC  и HQ = HHB  , то треугольники HHCP  и HHBQ  - равнобедренные с углами, равными ∠HCHB  = ∠BAC = 2α  , напротив оснований. Поэтому ∠HP HC = ∠HQHB  =90∘− α= β+ γ  . Пусть прямые ℓB  и ℓC  пересекают отрезок AH  в точках U  и V  соответственно. Тогда треугольник PUH  - равнобедренный с основанием PU  , значит ∠XP H = ∠UPH = 180∘−∠2BHA-= γ  . Рассуждая аналогично для треугольника QV H  , получаем, что ∠XQH = β  . Тогда получаем

∠XP HC =∠HP HC − ∠HP X = β+ γ− γ = β =∠XQHC,

откуда следует, что X  лежит на окружности, описанной около треугольника HCP Q  . Аналогично точка X  лежит на окружности, описанной около треугольника HBP Q  . Таким образом, пять точек X,HB  , P,Q,HC  лежат на одной окружности.

Тогда по свойству вписанных углов ∠XHBHC  = ∠XQHC  =β  . Четырёхугольник BHCHBC  − вписанный, поскольку ∠BHCC  = ∠BHBC = 90∘ . Значит, ∠HCHBC = 180∘− ∠ABC =180∘− 2β  , то есть ∠AHBHC  = 2β  . Отсюда следует, что HBX  - биссектриса угла ∠AHBHC  . Аналогично HCX − биссектриса угла ∠AHCHB  . Значит, точка X  является центром окружности, вписанной в треугольник AHBHC  , в частности, лежит на биссектрисе угла ∠BAC  .

_________________________________________________________________________________________________________________________________________________________________________________

Повторяя рассуждения для двух других биссектрис треугольника ABC  , получаем, что точка пересечения биссектрис треугольника ABC  совпадает с точкой пересечения высот треугольника, образованного прямыми ℓ ,ℓ ,ℓ .
 A  B C

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!