Комбинаторика на ММО: графы, турниры, логика, конструктивы
Ошибка.
Попробуйте повторить позже
В шахматном турнире каждый участник встретился с каждым один раз. В каждом туре каждый участник проводил по одной встрече. Не меньше чем в половине всех встреч оба участника были земляками (из одного города). Докажите, что в каждом туре была хотя бы одна встреча между земляками.
Предположим, что в каком-то туре не было игры между земляками. Тогда участники разбиваются на пары людей из разных городов. Рассмотрим произвольного участника. В каждой паре есть не более одного его земляка, также второй участник из его пары не является его земляком. Но тогда всего земляков у него меньше половины из всех участников. Значит, каждый участник сыграл больше игр с неземляками, чем с земляками, и в сумме игр между земляками было меньше половины. Противоречие.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!