Тема . ММО (Московская математическая олимпиада)

Комбинаторика на ММО: графы, турниры, логика, конструктивы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#82940

В королевстве некоторые пары городов соединены железной дорогой. У короля есть полный список, в котором поименно перечислены все такие пары (каждый город имеет свое собственное имя). Оказалось, что для любой упорядоченной пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, а король не заметил бы изменений. Верно ли, что для любой пары городов принц может переименовать все города так, чтобы первый город оказался названным именем второго города, второй город оказался названным именем первого города, а король не заметил бы изменений?

Источники: ММО-2014, 11.6(см. mmo.mccme.ru)

Показать ответ и решение

Пусть города королевства расположены и соединены железными дорогами так, как указано на рисунке. Тогда условие задачи выполнено. Действительно, можно представить, что на рисунке изображен многогранник с равными ребрами, который получается из правильного тетраэдра отсечением четырёх его вершин плоскостями. Тогда для любой упорядоченной пары его вершин можно совершить такое движение этого многогранника, при котором вторая вершина пары перейдет в первую её вершину и все вершины многогранника поменяются местами. Соответствующее такому движению переименование городов останется не замеченным королем, так как каждые два города с новыми названиями будут соединены железной дорогой тогда и только тогда, когда такой дорогой были соединены города, прежде носившие эти имена.

PIC

Рассмотрим такое переименование всех городов, при котором города B  и D  поменялись именами. Покажем, что в этом случае король заметит изменения. Действительно, если город A  изменил свое название, то король заметит, что единственный город, который был соединен дорогой и с B,  и с D,  теперь называется иначе. Если же город A  не изменил свое имя, то новый город C  теперь не будет соединен и с городом A,  и с новым городом B,  ведь новый город B  раньше был городом D,  а городов, соединенных и с A,  и с D,  не было.

Ответ:

Неверно

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!