Тема . ММО (Московская математическая олимпиада)

Алгебраические текстовые задачи на ММО

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ммо (московская математическая олимпиада)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71648

Некоторые из чисел a,a ,...,a
 1 2    200  написаны синим карандашом, а остальные — красным. Если стереть все красные числа, то останутся все натуральные числа от 1  до 100,  записанные в порядке возрастания. Если же стереть все синие числа, то останутся все натуральные числа от 100  до 1,  записанные в порядке убывания. Докажите, что среди чисел a1,a2,...,a100  содержатся все натуральные числа от    1  до 100  включительно.

Подсказки к задаче

Подсказка 1

Нужно доказать, что среди первых 100 чисел есть все числа от 1 до 100. Очень много чисел… Может можно доказать в общем случае, что какое-то число n есть среди первых 100?

Подсказка 2

А что будет, если этого числа n нет среди первых 100?

Подсказка 3

Ага, n будет где-то среди последних 100! Но при этом есть синие числа от 1 до 100, и красные числа от 1 до 100, то есть оба n находятся среди последних 100 чисел. Теперь надо бы найти противоречие, а его можно искать в количестве чисел до наших n: не зря же мы все n поместили во вторую половину чисел!

Подсказка 4

Сколько синих чисел до синего n? А до красного?

Подсказка 5

Оцените количество чисел до первого n с двух сторон: с одной стороны оно не превышает количества синих + количества красных до n, а с другой стороны первое n стоит хотя бы на 101 месте, тогда их больше чем…

Подсказка 6

Увидели противоречие? Тогда любое n от 1 до 100 находится среди первых 100, а значит мы доказали утверждение!

Показать доказательство

Заметим, что каждое из чисел от 1  до 100  встречается ровно 2  раза: один раз оно записано синим карандашом и один — красным. Предположим, что среди чисел a1,a2,...,a100  нет какого-то числа 1≤ n≤ 100.  Тогда синее n  и красное n  находятся среди a101,a102,...,a200.

1)  Сотрём все красные числа — остались синие от 1  до 100,  записанные в порядке возрастания, и среди них есть синее n.  До него записаны числа от 1  до n − 1,  то есть ровно n− 1  число.

2)  Сотрём все синие числа — остались красные от 100  до 1,  записанные в порядке убывания, и среди них есть красное n.  До него записаны числа от 100  до n+ 1,  то есть ровно 100− n  чисел.

Тогда до первого n  записано не более n− 1+ (100− n)= 99  чисел. Но так как первое n записано среди чисел a101,a102,...,a200,  то до n  записано как минимум 100  чисел. Противоречие.

Значит, предположение было неверным, и среди чисел a1,a2,...,a100  есть все числа от 1  до 100.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!