Теория чисел на Курчатове (с комбинаторными элементами)
Ошибка.
Попробуйте повторить позже
Назовем натуральное число модным, если в его записи встречается группа цифр (например, числа
модны, а
— нет). Докажите, что всякое натуральное число можно получить как частное от деления модного числа на
модное.
Подсказка 1
Как не раз говорил ДА, давайте сначала попробуем не целиком пример придумать, а постепенно его сделать. Вот сразу придумать такие числа, чтобы оба числа были модными и при этом делились друг на друга сложно. А можно ли придумать число, которые являлось бы заведомо модным и при этом делилось бы на наше? А как его найти?
Подсказка 2
Искать подобные числа в явном виде, зачастую, затруднительно, потому надо рассматривать набор и в доказывать, что в нем есть такое число. Если число N является k-значным (N-то на что нужно, чтобы делилось), то из набора вида 201600…0,201600…1,….,201699…9(после 2016 идут k-значные числа), по принципу Дирихле можно выбрать такое число, которое будет делиться на N. Пусть оно равно A, при этом, A/N=B. Но вот незадача, В необязательно модное. С другой стороны, если приписать что-то понятное к A, при этом делящееся на N, то можно получить число, которое делится на N, которое модное(из-за того, что содержит в себе A). Осталось так приписать это «что-то», чтобы после деления на N оно было модным.
Подсказка 3
Удобно было бы приписать к A число 2016N. Подумайте , что произойдет после того, как поделить данное число на N и почему вообще оно такое удобное для нас. После этого, задача сама решится:)
Пусть мы хотим получить число , которое содержит
знаков. Рассмотрим числа
. Среди этих чисел хотя бы
одно делится на
по принципу Дирихле, пусть оно равно
, при этом
.
Пусть также —
-значно. Рассмотрим число
, тогда
. В итоге
—
отношение двух модных.
что и требовалось доказать
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!