Тема . Курчатов

Теория чисел на Курчатове (с комбинаторными элементами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела курчатов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#68025

На доске написаны 100 различных натуральных чисел. Петя записал на доску красным цветом все их попарные суммы, а синим цветом — все их попарные произведения. Может ли оказаться так, что для каждого красного числа найдётся делящееся на него синее? (Допускается, что одно и то же синее число может делиться на разные красные числа).

Источники: Курчатов-2023, 11.1 (см. olimpiadakurchatov.ru)

Показать ответ и решение

Пусть на доске записаны числа 200!⋅1,200!⋅2,200!⋅3,...,200!⋅100.  Сумма любой пары имеет вид 200!⋅x, где 2≤ x≤ 199.  А произведение -     2
(200!) ⋅y,  где y ∈ ℕ.  Так как 200!  делится на все возможные значения x,  то в выбранной паре произведение чисел делится на их же сумму.

Ответ: да

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!