Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела курчатов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90887

Тетраэдр ABCD  с остроугольными гранями вписан в сферу с центром O.  Прямая, проходящая через точку O  перпендикулярно плоскости ABC  , пересекает сферу в точке E  такой, что D  и E  лежат по разные стороны относительно плоскости ABC.  Прямая   DE  пересекает плоскость ABC  в точке F  , лежащей внутри треугольника ABC.  Оказалось, что ∠ADE = ∠BDE, AF ⁄= BF  и          ∘
∠AF B = 80 . Найдите величину ∠ACB.

Подсказки к задаче

Подсказка 1

Нам бы очень хотелось, чтобы треугольники △ADE и △BDE оказались равны... Красиво ведь: равные углы, общая сторона, но условие о паре не равных отрезков рушит нам всё! Если они не равные, то что интересного можно заметить про эту пару?

Подсказка 2

В геометрических задачах часто бывает полезно посмотреть на каждое данное условие: зачем оно здесь, что можно из него вытащить? Из этих соображений было бы полезно посмотреть на точку Е — она может дать нам много равных отрезочков!

Подсказка 3

Итак, у вышеупомянутой пары треугольников есть две пары соответственно равных стороны и равные углы, но углы эти не между соответственно равными сторонами. Призовём на помощь теорему синусов, чтобы установить соотношение углов в этих треугольниках.

Подсказка 4

Всё равно нам пока не видно как выразить искомый угол... Красивую гипотезу о том, что F может быть центром окружности мы отмели ещё на условии о неравенстве отрезков, а делать что-то всё равно нужно. Попробуем провести доп построение, чтобы получить ещё один вписанный угол, опирающийся на дугу AB: попробуйте продлить AF до пересечения со сферой.

Подсказка 5

Самое время использовать свойства вписанного четырёхугольника и ту самую связь углов, которую мы получили ранее. Двух пар соответственно равных углов и общей стороны треугольников вполне достаточно, чтобы сделать выводы о равенстве!

Подсказка 6

Видим красоту: в плоскости (АВС) внезапно появился равнобедренный треугольник с искомым углом при основании и известным внешним углом. Осталось лишь немного счёта и задача решена :)

Показать ответ и решение

PIC

Первое решение.

Заметим, что точка E  равноудалена от точек A,B,C  , так ее проекция на плоскость ABC  совпадает с проекций точки O  на эту плоскость и является центром описанной окружности треугольника ABC  .

Рассмотрим треугольники ADE  и BDE.  Они имеют пару равных сторон AE  и BE  , общую сторону DE  и равные углы ADE  и BDE.  Из теоремы синусов следует, что эти треугольники либо равны, либо углы DAE  и DBE  дополняют друг друга до 180∘.  Первая ситуация невозможна, так как в случае равенства треугольников ADE  и BDE  точки A  и B  равноудалены относительно любой точки на стороне DE  , но по условию AF ⁄=BF.  Значит, ∠DAE + ∠DBE = 180∘.

Рассмотрим точку X  пересечения луча AF  со сферой Ω  , описанной около тетраэдра ABCD.  Заметим, что луч AF  лежит в плоскостях ABC  и AED  , а значит точка X  лежит на описанных окружностях треугольников ABC  и AED.  Точка E  равноудалена относительно всех точек описанной окружности треугольника ABC;  в частности, AE = XE.  Из вписанности четырехугольника AEXD  следует, что ∠DAE + ∠DXE = 180∘.  Раз AE = XE  , то E  - середина дуги AX  описанной окружности треугольника ADE  , и значит ∠ADE  =∠XDE  .

Используя выведенные ранее равенства углов, заключаем, что треугольники DBE  и DXE  равны по второму признаку:

∠DBE = 180∘ − ∠DAE =∠DXE, ∠XDE  = ∠ADE = ∠BDE,

сторона DE  – общая. Раз треугольники DBE  и DXE  равны, то вершины B  и X  равноудалены относительно любой точки на стороне DE;  в частности, BF = FX  .

Осталось посчитать углы в плоскости ABC.  Последовательно используя вписанность четырехугольника ABXC  , равнобедренность треугольника BFX  и теорему о внешнем угле для треугольника BF X  , пишем

∠ACB  =∠AXB  = 1⋅(∠FXB + ∠FBX )= 1⋅∠AF B = 40∘
               2                 2

________________________________________________________________________________________

Второе решение.

Пусть луч AF  пересекает сферу Ω  , описанную около тетраэдра ABCD  , в точке X  . По построению точки E  верно соотношение EX = EA  , которое влечет за собой равенство ∠ADE = ∠EAF  . Аналогичными рассуждениями получаем, что ∠BDE = ∠EBF  , и, следовательно, ∠EAF = ∠EBF  .

Обозначим точку пересечения прямой OE  с плоскостью ABC  , являющуюся центром описанной окружности треугольника ABC  , через O1  . Тогда ∠O1AE = ∠O1BE  .

Рассмотрим трехгранные углы AO1EF  и BO1EF  . В них совпадают плоские углы EAF  и EBF  , плоские углы O1AE  и O1BE  и двугранные углы при ребрах AO1  и BO1  прямые. Следовательно, соответствующие трехгранные углы равны. А значит равны и плоские углы ∠FAO1 =∠F BO1  . Отметим, что это равенство можно вывести и из теоремы косинусов для трехгранных углов. Указанное равенство возможно в двух случаях: либо точка F  лежит на серединном перпендикуляре к AB  (точки A  и B  симметричны относительно FO1  ), либо точка F  лежит на описанной окружности треугольника ABO
    1  . Первый случай запрещен условием AF ⁄= BF  , значит, имеет место второй. Тогда ∠AOB = ∠AFB = 80∘ и является центральным для угла ACB  в описанной окружности треугольника ACB  . В результате заключаем, что          ∘
∠ACB  =40 .

Ответ:

 40∘

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!