Тема . Всесиб (Всесибирская открытая олимпиада школьников)

Теория чисел на Всесибе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела всесиб (всесибирская открытая олимпиада школьников)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79775

Найти все натуральные n  , которые можно представить в виде суммы

    2   2
n =a + b,

где a  — минимальный делитель n  , отличный от 1,  и b  — какой-то делитель n.

Источники: Всесиб - 2021, 11.2 (см. sesc.nsu.ru)

Показать ответ и решение

Если n  нечётно, то и все его делители нечётны, поэтому правая часть равенства n= a2+b2  чётна — противоречие. Следовательно,  n  чётно и его минимальный неединичный делитель a  равен 2,  а        2
n= 4+ b.

По условию b  делит        2
n= 4+ b,  значит, делит и разность     2
n − b = 4,  поэтому b  должно быть равно одному из чисел 1, 2, 4.  При этом n  равно 5, 8, 20  соответственно. Первый случай не подходит ввиду нечётности, остальные два удовлетворяют условию задачи.

Ответ: 8 и 20

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!