Тема . ПВГ (Покори Воробьёвы Горы)

Логарифмы на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#71665

Найдите все значения x  , при каждом из которых выражения

      (∘-----2-    )          (∘ ----2--   )
log2013  1+ tg x+ tgx   и  log2012   1+tg x− tg x

равны друг другу.

Подсказки к задаче

Подсказка 1

Посмотрим внимательно на аргументы логарифмов! Что про них можно сказать?

Подсказка 2

Верно, можно заметить, что их произведение образует разность квадратов! Причем, разность этих квадратов равна 1. Тогда выразим один аргумент через другой, что можно сказать про них?

Подсказка 3

Да, в таком случае, если каждый из них не равен единице, то равенство логарифмов невозможно! Ведь, тогда один из аргументов меньше единицы, а второй больше единицы. Поэтому каждый из аргументов равен единице! Остаётся решить несложное тригонометрическое уравнение.

Показать ответ и решение

Заметим, что

(∘ ----2--   )  (∘----2--    )
   1+tg x+ tg x ⋅  1+ tgx − tgx = 1

∘-------            1
 1+ tg2x+ tgx = ∘1+-tg2x-− tgx

Тогда надо найти x  , при которых

     (              )
       ------1------        (∘ ----2--    )
log2012  ∘1-+tg2x− tg x = log2013   1+ tg x − tgx

Это равенство возможно только при ∘ -------
  1+ tg2x − tgx= 1  , так как если
∘ -------
  1+ tg2x− tgx⁄= 1  , то один логарифм будет неположительный, а другой — неотрицательный.

                       {
∘1-+tg2x= 1+ tgx  ⇐ ⇒     1+ tgx ≥0               ⇐ ⇒  tgx= 0
                         1+ tg2x= 1+ tg2x +2tgx
Ответ:

 πn, n ∈ℤ

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!