Тема . ПВГ (Покори Воробьёвы Горы)

Теория чисел на ПВГ

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела пвг (покори воробьёвы горы)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#48590

Найдите наибольшее натуральное число, не превосходящее 2015  , такое, что при умножении на 5  сумма его цифр (в десятичной записи) не меняется.

Источники: ПВГ-2015, 11.3 (см. pvg.mk.ru)

Показать ответ и решение

Попробуем найти такое число среди тех, что больше 2000  . Поскольку сумма цифр не меняется, то не меняется и остаток числа по модулю 9  , но при этом он умножается на 5  , то есть для первоначального остатка d  имеем

d≡9 5d  ⇐⇒   4d ≡9 0 ⇐ ⇒  d ≡9 0

То есть такое число обязано быть кратно 9  . Среди больших 2000  такое ровно одно 2007  — оно подходит: 2007 ⋅5 =10035  . Оценка же следует из того, что следующее кратно 9  число уже 2016> 2015  .

Ответ:

 2007

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!