Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#47233

Решите неравенство

    (-5      )       ( 10-     )
arcsin 2π arccosx  > arccos  3π arcsinx

Источники: Ломоносов - 2020, 11.3 (см. olymp.msu.ru)

Показать ответ и решение

Для начала запишем ОДЗ:

(| |x|≤1
{ | 5-arccosx|≤ 1
|(  21π0
  |3π arcsinx|≤ 1

Отсюда следует, что arccosx≤ 2π,arcsinx ≤ 3π,
        5         10  поэтому arcsin x> 0,arccosx> 0  , ведь иначе не выполняется известное тождество arccosx+ arcsinx = π.
               2

Обозначим t= arcsinx  (t> 0),
     π  тогда arccosx= π − πt.
        2  Неравенство из условия принимает вид

    (5   5)       ( 10)
arcsin 4 − 2t > arccos  3 t

Если      (10 )  π
arccos 3 t ≥ 2,  то неравенство не может выполняться в силу области значений арксинуса.

Нам могут подойти только      10t  π       10t  π          3π
arccos-3 ≤ 2  ⇐⇒   -3 ≤ 2  ⇐⇒   t≤ 20.

Возьмём синус обеих частей полученного выше неравенства. На промежутке [π2;π2]  синус является монотонно возрастающей функцией, поэтому знак неравенства не изменится:

       ∘--------
5− 5t>  1 − 100t2
4  2        9

При 5 − 5t< 0
4  2  решений нет, иначе при t≤ 1
   2  возведём в квадрат

  (       2)    (   100-2)
25 1− 4t+ 4t > 16 1−  9 t

     3  3    9
t∈ [− 10,10]∖{50}

arcsinx∈ [− 3π-,3π-]∖ {9π-}
          10 10   50

Остаётся учесть, что arcsinx,arccosx> 0,  а из условия arccosx ≤ 2π5-  следует arcsinx≥ π10.

Ответ:

 [sin π-,sin9π)∪(sin9π,sin3π]
   10   50     50   10

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!