Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#48594

Решите неравенство

(                     )(  (    7)          )
 logπ6 (2x− 5)− logπ6(7 − 2x) cos x+ 4 − cos(2x − 1) (|x − 4|− |2x− 5|)≥ 0.

Источники: Ломоносов-2016, 11.5 (см. olymp.msu.ru)

Показать ответ и решение

ОДЗ:

{ 2x− 5> 0

  7− 2x> 0

    5 7
x∈ (2;2)

На ОДЗ (|x− 4|− |2x− 5|)= (4 − x)− (2x − 5)= 9− 3x,  а по формуле разности косинусов

(   (   7)          )       ( 12x +3)   ( −4x+ 11)
  cos x+ 4  − cos(2x− 1) = −2sin  --8--- sin  --8----

По методу рационализации знак (                     )
 logπ6(2x − 5)− logπ6(7− 2x) на ОДЗ совпадает со знаком (    )
 π6 − 1 (2x− 5− (7− 2x))= 46(π− 6)(x − 3)

В итоге получаем неравенство

    (      )   (       )
− sin 12x+-3 sin −4x+-11 (x− 3)(π − 6)(x− 3)≥ 0
        8          8

  (      )   (       )
sin  12x+-3- sin −4x-+11 (x− 3)2 ≥0
      8          8

На ОДЗ

12x-+3-∈( 6⋅5+3;6-⋅7-+3) ∈(4;6)∈ (π;2π),
  8        8      8

поэтому    (12x+3)
sin   8   < 0.

Учтём решение x = 3,  сразу запишем в ответ. Остаётся неравенство

  ( −4x+ 11)
sin  ---8--- ≥ 0

На ОДЗ

         (                 )         (     )
−-4x-+11 ∈  −7⋅2+-11;−-5⋅2+11  ∈(−1;1)∈ − π;π ,
   8          8        8                2 2

поэтому неравенство равносильно

    −4x+-11-          11-
0 ≤   8     ⇐ ⇒  x ≤ 4
Ответ:

(5;11]∪{3}
 2 4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!