Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76408

В треугольнике ABC  точки A ,B ,C −
 1  1 1 середины сторон BC,AC  и AB  соответственно. Найдите длину стороны AC  , если известно, что сумма векторов

  −−→     −−→    −−→
3⋅AA1+ 4⋅BB1+ 5⋅CC1

равна вектору с координатами (2,1).

Подсказки к задаче

Подсказка 1

Самое главное в этой задаче — это удобно ввести обозначения. Пусть середина каждого из отрезков равна a, b, c. Но надо правильно выбрать направления. Почему треугольник в данном случае очень полезен?

Подсказка 2

Верно, если задать все направления по часовой стрелке, то просто сумма 2a+2b+2c=0, так как мы вернулись в начальную точку треугольника. А теперь нужно подставить в формулу из условия выражения через наши векторы. Попробуйте это сделать. Хорошо бы было получить в итоге просто один вектор, так как теперь нам будут известны его координаты. Но через какой удобнее всего будет выразить?

Подсказка 3

Да, вспомним в принципе условие задачи. Нам нужно найти длину стороны, а значит, через этот вектор и будет удобно выразить всю сумму(например, если AC = |2b|, то через b). Осталось только вспомнить, что через координаты вектора можно найти его длину, и победа!

Показать ответ и решение

Обозначив

    −−→   ⃗   −→          −→
2⃗a= BC,  2b= CA  и  2⃗c= AB,

PIC

получаем

           −→
2⃗a+ 2⃗b+2⃗c= 0

        −→     −−→     −−→
(2,1)= 3⋅AA1+ 4⋅BB1 +5 ⋅CC1 = 3(2⃗c+ ⃗a)+4(2⃗a +⃗b)+ 5(2⃗b+⃗c)=

       ⃗          ⃗              ⃗
=4(2⃗a+ 2b+ 2⃗c)+4(⃗a+b +⃗c)− (2⃗c+⃗a)+ (2b +⃗c)=

=−→0 + −→0 − (⃗a+ ⃗b+ ⃗c)+ 3⃗b= 3⃗b⇒

           |    | |      |   √-2--2-   √-
⇒ AC = |2⃗b|= |||2⋅3⃗b|||=|||2 ⋅(2;1)|||= 2-2-+-1-= 2-5
            3      3           3       3
Ответ:

 2√5
 3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!