Тема . Ломоносов

Теория чисел и десятичная запись на Ломоносове

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела ломоносов
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#48591

Рассматриваются всевозможные наборы, которые состоят из 2017  различных натуральных чисел и в каждом из которых ни одно из чисел нельзя представить в виде суммы двух других чисел этого набора. Какое наименьшее значение может принимать наибольшее число в таком наборе?

Источники: Ломоносов-2017, 11.8 (см. olymp.msu.ru)

Показать ответ и решение

Заметим, что нам подойдёт набор {2016,2017,...4032} , в которым максимальным будет 4032  . Пусть нам удалось найти какой-то меньший ответ A≤ 4031  . Поделим числа на пары (1,A− 1),(2,A − 2),...  . Таких пар будет не более  4031
⌊ 2 ⌋= 2015  (пара (A∕2,A∕2)  нас тоже устроит), при этом в парах учтены все элементы, меньшие A  . Из каждой пары мы можем взять не более одного элемента, откуда с учётом A  чисел не больше 2016  . Значит, A ≥ 4032  .

Ответ:

 4032

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!