Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#41251

В некоторых клетках полоски 1× 2021  поставлено по одной фишке. В каждую из пустых клеток записывается число, равное модулю разности количества фишек слева и справа от этой клетки. Известно, что все записанные числа различны и отличны от нуля. Какое наименьшее количество фишек может быть расставлено в клетках?

Источники: СПБГУ-21, 11.1 (см. olympiada.spbu.ru)

Показать ответ и решение

Пусть количество расставленных фишек равно n.  Заметим, что числа в пустых клетках лежат в диапазоне от 1  до n  и имеют одинаковую четность, поскольку при переходе через блок из фишек размера k  значение числа поменяется на 2k,  чётность модуля не поменяется. По принципу Дирихле количество пустых клеток (равное 2021− n  ) не больше половины, то есть не больше [n+1]
  2  .  То есть

        [n+ 1]  n +1          4041
2021− n≤  --2- ≤ --2-  =⇒   n≥ --3-= 1347

Осталось привести пример для 1347:

 01◟01.◝◜..01◞  11◟1.◝◜..1◞
674пары 01673единицы

где единицами обозначены фишки, а нулями — пустые клетки. Здесь в пустых ячейках окажутся числа

1347,1345,1343,...,3,1
Ответ:

 1347

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!