Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#70479

При каких n  клетчатую доску n ×n  можно разбить по клеточкам на один квадрат 2× 2  и некоторое количество полосок из пяти клеток так, что квадрат будет примыкать к стороне доски?

Источники: СПБГУ-22, 11.5 (см. olympiada.spbu.ru)

Показать ответ и решение

Если доску n× n  удалось разрезать на один квадрат 2 ×2  и некоторое количество полосок из пяти клеток, то n2 =22+ 5m  , откуда n  дает остаток 2 или 3 от деления на 5. Предположим, что n = 5k +3  и доску удалось разрезать требуемым образом. Развернем ее так, чтобы квадрат примыкал к верхней стороне доски. Запишем в клетках верхней строки единицы, в клетках следующей за ней строки — двойки, и так далее. Заметим, что сумма чисел в пяти последовательных строках кратна 5, поскольку

                                         .
ni+ n(i+ 1)+n(i+2)+ n(i+ 3)+n(i+4)= 5n(i+ 2)..5

Поэтому остаток от деления на 5 суммы всех расставленных чисел равен

(n+ 2n+ 3n)≡ 6(5k +3)≡ 3 (mod 5 )

С другой стороны, в каждой полоске сумма чисел кратна пяти, а в квадрате сумма чисел равна 1+ 1+2 +2= 6.  Значит, остаток от деления на 5 суммы всех расставленных чисел равен 1 , и мы получаем противоречие.

Если n= 5k+2,  то можно вырезать угловой квадрат 2× 2,  верхнюю полоску 2× 5k  разрезать на горизонтальные полоски из пяти клеток, а прямоугольник 5k ×(5k+2)  разрезать на вертикальные полоски из пяти клеток.

Ответ:

при n = 5k − 3,k∈ ℕ

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!