Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#72037

В каждой клетке шахматной доски стоит конь. Какое наименьшее число коней можно убрать с доски так, чтобы на доске не осталось ни одного коня, бьющего ровно трех других коней?

Источники: СПБГУ-2017, 11.5 (см. olympiada.spbu.ru)

Показать ответ и решение

Будем говорить, что конь контролирует клетку доски, если он бьёт эту клетку или стоит на ней. Докажем вначале, что менее 8  коней убрать не удастся. Нам достаточно проверить, что с каждой половины доски придётся снять не менее 4  коней. Рассмотрим для определённости верхнюю половину и отметим на ней шесть коней так, как показано на рисунке:

PIC

(для удобства они выделены разным цветом). Назовём клетки, отмеченные на рисунке кружочком, кратными, а остальные клетки простыми. Разобьём рисунок на два квадрата 4× 4  и зафиксируем один из них. Стоящие в квадрате чёрные кони бьют ровно по три клетки. Поэтому необходимо совершить одно из трёх действий.

1)  Убрать двух коней, стоящих на простых клетках, контролируемых чёрными клетками (ими могут быть и сами чёрные кони).

2)  Убрать коня, стоящего на кратной клетке. В результате белый конь из этого квадрата будет бить ровно трёх других коней. Значит, придётся ещё убрать коня с простой клетки, контролируемой белым конём (возможно, самого белого коня).

Те же действия необходимо проделать и для другого квадрата. Таким образом, каждый квадрат определяет пару клеток в верхней половине доски, с которых нужно убрать коней. Эти пары не пересекаются, поскольку никакие два отмеченных коня из разных квадратов не контролируют общих клеток. Иными словами, действия с квадратами производятся независимо друг от друга. Поэтому с верхней половины доски придётся убрать не менее четырёх коней.

Приведём пример, показывающий, что 8  коней достаточно. На рисунке отмечены кони, которых нужно снять с доски.

PIC

Ответ:

 8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!