Тема . СПБГУ

Теория чисел на СПБГУ: десятичная запись, оценка+пример, разные системы счисления

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#87405

Кузнечик прыгает по числовой прямой. Каждый свой прыжок он может совершить в любом направлении. Он начинает в точке 0 прыжком единичной длины. Каждый следующий прыжок должен быть на три больше предыдущего (т.е. первый прыжок длины 1, второй длины 4, третий длины 7 и т.д.). За какое наименьшее число прыжков кузнечик сможет оказаться в точке 2024?

Источники: СПБГУ - 2024, 11.1 (см. olympiada.spbu.ru)

Показать ответ и решение

Процесс прыжков можно описать следующим образом: n  прыжков кузнечика — это сумма n  первых членов арифметической прогрессии an =3n− 2  , в которой перед каждым членом стоит +  или − . Ясно, что за n  прыжков кузнечик сможет оказаться не более, чем в (3n−1)n
   2  — сумма n  первых членов, в которой все члены взяты с +  . Значит, необходимо, чтобы (3n−1)n-
  2  было не меньше 2024  . То есть n ≥37  .

Пусть кузнечик прыгал влево некоторое количество прыжков, и суммарно он прыгнул влево на x  единиц, тогда после n  прыжков он окажется в точке (3n−1)n
  2   − 2x  . Значит, чтобы попасть в 2024  , необходимо, чтобы (3n−1)n-
  2  было чётным. Значит, 37  и 38  прыжков не хватит. В качестве примера на 39  можно прыгнуть влево на 2  и на 39  прыжках, а на остальных — вправо.

Ответ: 39

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!