Тема . СПБГУ

Теория чисел на СПБГУ: десятичная запись, оценка+пример, разные системы счисления

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела спбгу
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#91462

На доске написано число 1200  . Петя приписал к нему справа 10n+ 2  пятерок, где n  — неотрицательное целое число. Вася подумал, что это шестеричная запись натурального числа x  , и разложил x  на простые множители. Оказалось, что среди них ровно два различных. При каких n  это возможно?

Источники: СПБГУ-21, 11.4 (см. olympiada.spbu.ru)

Показать ответ и решение

x =(1200 55...5) = (120100...0) − 1 =289⋅610n+2− 1=
        ◟1 ◝0n◜+2◞6     ◟10◝n◜+ ◞2 6
  (      5n   )(      5n   )         n            n
 = 17⋅6⋅6  − 1 17⋅6⋅6  +1 = (102⋅7776 − 1)(102⋅7776 +1).

Если n= 0  , то x= 101⋅103  , что нам подходит. Пусть n ≥1  . Заметим, что

102mod 101 =1, 7776n mod 101= (77⋅101− 1)n mod101= (−1)n.

Положим           n             n
a= 102⋅7776 − 1,b =102⋅7776  +1  . Эти числа взаимно просты, так как они нечётны и различаются на 2. Рассмотрим два случая.

1) n  чётно. Тогда a  делится на 101. Но a  и b  не имеют общих простых делителей, откуда       p
a =101  при некотором натуральном    p  . Мы получим

  p            n            n
101 − 1= 102 ⋅7776 − 2= 2(51⋅7776  − 1),

что невозможно, поскольку левая часть кратна 4 , а правая — нет.

2) n  нечётно. Тогда b  делится на 101 и аналогично b= 101q  при некотором натуральном q  . Поэтому

   q           n
101 − 1 =102⋅7776 ,

что невозможно, поскольку левая часть кратна 5 , а правая — нет.

Ответ: только при n = 0

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!