Графы, турниры и игры на СПБГУ
Ошибка.
Попробуйте повторить позже
В стране городов. Некоторые из них соединены авиалиниями, а некоторые нет. Известно, что для любых
городов найдётся
пар городов, не соединённых авиалиниями. Какое наибольшее количество авиалиний может быть в стране?
Источники:
Подсказка 1
Переведем задачу на язык графов. Нам нужно придумать, как использовать условие на 200 городов. А что если взять какие-нибудь особенные 200 городов?
Подсказка 2
Рассмотрим подграф А из 200 вершин с наибольшим количеством рёбер и подграф В из оставшихся 200 вершин. Нам нужно как-то оценить количество ребер между А и В. Что можно сказать о степенях вершин в В? А в А?
Подсказка 3
Рассмотрим вершину из А, соединенную с наименьшим количеством вершин (в А). Пусть такая ее степень это х. Какие тогда степени могут иметь вершины из В?
Подсказка 4
Ни одна вершина в В не может быть соединена хотя бы с х+1 вершиной в А. Как тогда оценить количество рёбер между А и В? Нам надо сделать его как можно больше.
Подсказка 5
Между этим графами не более, чем 200*х рёбер. А в подграфах сколько ребер может быть максимально?
Подсказка 6
Не более, чем 2*19600. Итак, теперь нам надо оценить х. Как это можно сделать?
Подсказка 7
Если х — это наименьшая степень вершины в х, то сколько рёбер может быть в А?
Подсказка 8
Не менее, чем 100х. Осталось лишь оценить х, используя полученные оценки на подграф А ;) не забываем про пример!
Рассмотрим граф, в котором города — вершины, а авиалинии — рёбра. Рассмотрим подграф из
вершин с наибольшим количеством
рёбер и подграф
из оставшихся
вершин.
Пусть вершина из подграфа
соединена с наименьшим количеством вершин в этом подграфе (
вершин). Предположим,
что в подграфе
имеется вершина
, которая соединена с хотя бы
вершиной из подграфа
. В таком случае
вершину
можно переместить в подграф
вместо вершины
и в нём будет больше авиалиний, что противоречит
выбору подграфа
. Следовательно, любая вершина из подграфа
связана не более чем с
вершинами из подграфа
.
Значит, между этими подграфами не более рёбер. Внутри же каждого из этих подграфов не более
рёбер.
Значит, всего в графе не более
Как известно, — это наименьшая степень вершины в подграфе
. Значит, в
не менее
рёбер. С другой
стороны, в этом подграфе не более
рёбер, откуда
. Теперь мы можем оценить количество рёбер в графе:
.
_________________________________________________________________________________________________________________________________________________________________________________
Приведём пример на рёбер. Разбиваем города на
групп по
городов. Внутри групп между городами авиалиний нет, а между
городами из разных групп — есть.
Пусть выбрано городов так, что из них
город из первой группы,
из второй,
,
— из
-й. Тогда количество пар, не
соединённых авиалиниями, будет не менее
по неравенству между средним квадратическим и средним арифметическим
Мы показали, что для произвольного подграфа в примере выполняется условие задачи.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!