Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#46227

На сторонах BA  и BC  треугольника ABC  совершенно случайно взяты точки M  и N  . Найти вероятность того, что площадь треугольника BMN  окажется не больше половины площади треугольника ABC  .

Источники: Росатом-19, 11.4 (см. mephi.ru)

Показать ответ и решение

Обозначим BM :BA = x,BN :BC =y  . Тогда SBMN- =xy ≤ 1
 SABC      2  , где x,y  равномерно распределены на отрезке [0,1]  . Представим это в виде квадрата 1 ×1  — выбор (x,y)  аналогичен выбору случайной точки из квадрата.

PIC

Нас интересует площадь под гиперболой xy = 12  внутри этого квадрата, которая равна

1  ∫1 1    1   1   1   1 +ln2    √--
2 +  2xdx= 2 + 2lnx|1∕2 =---2--= ln 2e
  1∕2
Ответ:

ln√2e

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!