Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела росатом
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76663

Длины всех ребер (боковых и основания) тетраэдра ABCD  равны 1 . На ребре AB  расположена точка M  так, что AM :AB =1 :3  . Найти расстояние между скрещивающимися прямыми CM  и AD  .

Источники: Росатом - 2021, 11.6, комплект 2 (см. olymp.mephi.ru)

Показать ответ и решение

Введем декартову систему координат с началом координат в точке A  , ось x  направим вдоль AB  , ось y  – на плоскости основания  ABC  перпендикулярно оси абсцисс, а ось z  перпендикулярно плоскости основания тетраэдра.

PIC

Из условия       1     1
AM  = 3AB = 3  . Пусть E  – середина AB  . Так как все ребра тетраэдра равны 1  , то радиус окружности, описанной около равностороннего треугольника в основании:         √3
R= AO = 3  .

Радиус окружности, вписанной в основание:         √3
r= EO =  6  .

Из прямоугольного треугольника DAO  находим высоту пирамиды:

    ∘ ---------  ∘-----  √-
DO =  AD2 − AO2 = 1 − 13 =-63-

Высота равностороннего треугольника ABC  со стороной 1  :      √ -
CE = -23  .

Теперь можно выписать координаты всех нужных точек: A(0,0,0)  ,      √- √-
D (12,63,36)  , M (13,0,0)  ,     √-
C(12,23,0)  .

Таким образом

       √ - √-          √-
−−→AD ={1,--3,-6};−−M→C = {1,-3,0}
     2  6  3         6 2

Напишем уравнение плоскости, проходящей через ребро AD  параллельно CM  . Найдем вектор, перпендикулярный этой плоскости

−→   −−→   −−→    1 √3 √6    1 √3
N = AD × MC = {2,6-,-3 } ×{6,-2-,0}=

  1     √-  √-    1√ -     1    √- 2√6 8√3   √6-   √-   √-
= 12 ⋅({3, 3,2 6}× {3, 3,0})= 12{−6 2,-3-,-3-}=-18-{−3 3,1,2 2}

Уравнение искомой плоскости:

  √ -      √-
−3  3x +y+ 2 2z = 0

Искомая в задаче величина равна расстоянию d  от точки M  до этой плоскости:

   |− 3√31+ 0+ 0|  √3-
d= --√27-3+1+-8-- =-6-
Ответ:

 √3
 6

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!