Тема . Межвед (на базе ведомственных образовательных организаций)

Тригонометрия на Межведе

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела межвед (на базе ведомственных образовательных организаций)
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#72038

Решите уравнение

   5
8cos x− 5cosx − 2cos3x= 1

Источники: Межвед-2022, 11.4 (см. www.academy.fsb.ru)

Показать ответ и решение

   5
8cos x− 5cosx − 2cos3x= 1

Используем формулу косинуса тройного угла cos3x= 4cos3x− 3cosx  получаем

8cos5x− 5cosx− 2(4cos3x− 3cosx)= 1

8cos5x − 8cos3x+ cosx= 1

Разложим нашу левую часть в произведение чисел, каждое из которых по модулю не больше 1.

cosx(8cos4x − 8cos2x+1)= 1

cosx(−8 cos2x(− cos2x+ 1)+1)= 1

По основному тригонометрическому тождеству получаем

cosx(−8cos2x sin2x+ 1)= 1

По формуле синуса двойного угла получаем

cosx(−2sin22x+ 1)=1

По формуле косинуса двойного угла получаем

cosxcos4x= 1

Так как − 1≤ cosx ≤1  и − 1 ≤cos4x ≤1,  то равенство возможно только в двух случаях

{ cosx= 1      { cosx= −1
  cos4x= 1 или   cos4x= −1

Рассмотрим систему

{
  cosx= 1
  cos4x= 1

Решим уравнение cosx= 1.  Получаем x= 2πn, n∈ ℤ.  Заметим, что эти решения также являются и решениями второго уравнения системы, поэтому для первой системы имеем x =2πn, n ∈ℤ.

Рассмотрим теперь вторую систему

{
  cosx =− 1
  cos4x= −1

Решим уравнение cosx= −1.  Получаем x= π +2πn.  Подставим эти решения во второе уравнение системы и получим cos4(π +2πn)= cos(4π+8πn)= 1  — противоречие. Значит, у второй системы нет решений.

Ответ:

 2πn,n∈ ℤ

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!