18.06 Алгебра. Теорема Виета
Ошибка.
Попробуйте повторить позже
Найдите все значения при каждом из которых уравнение
имеет решения и все решения этого уравнения положительные.
Данное уравнение квадратного типа и вырождается в линейное при
Рассмотрим этот случай отдельно. Тогда уравнение примет вид
Отсюда получаем Следовательно, значение параметра
нам
подходит.
Пусть Тогда уравнение квадратное и дискриминант равен
Отсюда получаем
Для того чтобы все корни квадратного уравнения были положительны, необходимо, чтобы их сумма и произведение были положительны. Следовательно, по теореме Виета:
С учетом неотрицательности дискриминанта имеем:
Объединив все подходящие случаи, получим
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!