Тема . Алгебраические текстовые задачи

Задачи на движение: алгебраический подход

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела алгебраические текстовые задачи
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83296

На стадионе имеются две беговые дорожки. Каждая из них является границей квадрата со сторонами 200 м и 300 м соответственно. Квадраты имеют общую вершину А и две стороны меньшего квадрата лежат на сторонах большего квадрата. Два друга Петя и Коля решили пробежаться, но выбрали для этого разные дорожки. Стартовали одновременно из точки А и бежали 3 часа в одном направлении с одинаковой скоростью 100 м/мин. Сколько минут за время тренировки ребята бежали рядом с друг другом?

Подсказки к задаче

Подсказка 1

Назовём общую вершину А, а вершины малого квадрата, лежащие на сторонах большого - B и C. Пусть движение происходит от В к С. Тогда моменты встречи в В определяют начало промежутка в 4 минуты, когда ребята бегут вместе. Как бы найти эти моменты времени для каждого мальчика...

Подсказка 2

Верно, нужно рассчитать, сколько времени потребуется каждому, чтобы добраться до точки В, а затем найти, за сколько минут они пробегут целый круг и вернутся в В. Если мы умножим время, за которое каждый из мальчиков пробегает квадрат на какое-то целое число, и добавим соответствующее время добегания до точки В, то сможем найти все моменты времени, в которые ребята оказывались в этой точке.

Подсказка 3

Получаем 1+3t=2k. Обратите внимание на чётность)

Подсказка 4

Верно, t может быть только нечётным. Иначе говоря, t=2m-1 при нечётном m. Надо только подставить m в начальное уравнение времени касательно t и найти, при скольких m оно меньше 1000. Это и будет количество 4-минутных встреч. И не забудьте прибавить 2 минуты, что ребята вместе пробежали в самом начале!

Показать ответ и решение

Пусть движение происходит в направлении против часовой стрелки. Введём обозначения как показано на рисунке:

PIC

Петя бежит по большой дорожке из точки A  , Коля — по малой. Моменты времени, в которые Петя и Коля попадают в точку B  за 100  минут бега, описываются сериями: 10+12t,6+ 8k  (считаем в минутах, t  и k  — целые). Моменты встречи друзей в точке B  определяют начало промежутка времени в 4  минуты, в течении которого они бегут вместе. Также необходимо учесть, что в самом начале они вместе пробегают отрезок AC  за 2  минуты.

Найдём, когда серии пересекаются: 10 +12t= 6+8k,1+3t= 2k  . Видим, что если t  чётно, то не найдётся такого k  , чтобы равенство выполнилось, а если нечётно — найдётся. Значит, t= 2m − 1  и серия, описывающая встречи в точке B,  имеет вид: 24m − 2  . За 3 часа встречи происходили при 24m − 2 ≤180 =⇒   m≤ 7  Значит, они пробегают вместе 2+7⋅4 =30  минут.

Ответ: 30

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!