Задачи на движение: алгебраический подход
Ошибка.
Попробуйте повторить позже
На стадионе имеются две беговые дорожки. Каждая из них является границей квадрата со сторонами 200 м и 300 м соответственно. Квадраты имеют общую вершину А и две стороны меньшего квадрата лежат на сторонах большего квадрата. Два друга Петя и Коля решили пробежаться, но выбрали для этого разные дорожки. Стартовали одновременно из точки А и бежали 3 часа в одном направлении с одинаковой скоростью 100 м/мин. Сколько минут за время тренировки ребята бежали рядом с друг другом?
Подсказка 1
Назовём общую вершину А, а вершины малого квадрата, лежащие на сторонах большого - B и C. Пусть движение происходит от В к С. Тогда моменты встречи в В определяют начало промежутка в 4 минуты, когда ребята бегут вместе. Как бы найти эти моменты времени для каждого мальчика...
Подсказка 2
Верно, нужно рассчитать, сколько времени потребуется каждому, чтобы добраться до точки В, а затем найти, за сколько минут они пробегут целый круг и вернутся в В. Если мы умножим время, за которое каждый из мальчиков пробегает квадрат на какое-то целое число, и добавим соответствующее время добегания до точки В, то сможем найти все моменты времени, в которые ребята оказывались в этой точке.
Подсказка 3
Получаем 1+3t=2k. Обратите внимание на чётность)
Подсказка 4
Верно, t может быть только нечётным. Иначе говоря, t=2m-1 при нечётном m. Надо только подставить m в начальное уравнение времени касательно t и найти, при скольких m оно меньше 1000. Это и будет количество 4-минутных встреч. И не забудьте прибавить 2 минуты, что ребята вместе пробежали в самом начале!
Пусть движение происходит в направлении против часовой стрелки. Введём обозначения как показано на рисунке:
Петя бежит по большой дорожке из точки , Коля — по малой. Моменты времени, в которые Петя и Коля попадают в точку за минут бега, описываются сериями: (считаем в минутах, и — целые). Моменты встречи друзей в точке определяют начало промежутка времени в минуты, в течении которого они бегут вместе. Также необходимо учесть, что в самом начале они вместе пробегают отрезок за минуты.
Найдём, когда серии пересекаются: . Видим, что если чётно, то не найдётся такого , чтобы равенство выполнилось, а если нечётно — найдётся. Значит, и серия, описывающая встречи в точке имеет вид: . За 3 часа встречи происходили при Значит, они пробегают вместе минут.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!