Пересечение отрезков и прямых
Ошибка.
Попробуйте повторить позже
Дан правильный -угольник в котором проведены все диагонали. Докажите, что они образуют не больше
точек пересечения (не считая вершин).
Источники:
Подсказка 1
Нам дали уж слишком какое-то магическое число, но каждое его слагаемое похоже на какой-то комбинаторный подсчёт. Может быть, у нас получится объяснить, как получить каждое из этих слагаемых?
Подсказка 2
1-ое слагаемое: эта формула нам так и кричит, что в ней выбрали 4 вершины многоугольника без учёта их порядка. А как выбор 4-ёх вершин связан с диагоналями?
Подсказка 3
2-ое слагаемое: с помощью какого предположения было получено первое слагаемое? Заметьте, что почти каждое следующее слагаемое стоит со знаком минус, а значит, они как-то уточняют нашу первоначальную оценку.
Подсказка 4
2-ое слагаемое: давайте вспомним, что у нас в условии правильный многоугольник, попробуйте порисовать разные правильные многоугольники и диагонали в них, чтобы найти такую точку, в которой всегда пересекаются много диагоналей, что это за точка?
Подсказка 5
2-ое слагаемое: верно, это центр нашего многоугольника. Остаётся только посчитать, сколько раз мы посчитали её и вычесть так, чтобы по итогу в нашем подсчёте точка осталась учтена.
Подсказка 6
3-е слагаемое: оно явно содержит похожие диагонали на те, которые мы выбирали, когда рассуждали про центр, потому что в нём тоже фигурирует n/2. Может быть стоит опять порассуждать про такие диагонали?
Подсказка 7
3-е слагаемое: первый множитель в слагаемом это n/2, давайте тогда зафиксируем какую-то диагональ, проходящую через центр многоугольника. Попробуйте понять, что означают остальные множители, последовательно распутывая, за что отвечает каждый из множителей.
Подсказка 8
3-е слагаемое: верно, слева и справа от диагонали осталось по n/2-1 точке. А значит, вторым действием мы скорее всего выбрали с одной из сторон одну из точек. Почему тогда последний множитель не такой же, а имеет на 2 точки меньше? Понятно, что, выкинув 2 точки с другой стороны, мы запретили какие-то 2 диагонали, остаётся понять - какие?
Подсказка 9
3-е слагаемое: кажется, что пока наши рассуждения задают только пару диагоналей и проблем не видно, но можно ли как-то для этой пары найти однозначно третью диагональ, которая бы проходила через их точку пересечения?
Подсказка 10
3-е слагаемое: да, можно, если отразить симметрично вторую диагональ относительно "центральной".
Подсказка 11
3-е слагаемое: а вы заметили, что на самом деле это слагаемое содержит в себе удвоенное количество ситуаций, про которые мы рассуждали? Ведь, когда мы брали диагональ-1 с концами по разные стороны от "центральной" диагонали и отражали её, то получалась диагональ-2, которая тоже может быть посчитана нашими рассуждениями, а так как симметричная для 2-ой диагонали - 1-ая, то мы посчитали всё дважды. А сколько раз мы посчитали такие ситуации в 1-ом слагаемом?
Подсказка 12
Верно, по 3 раза, потому что там мы выбираем неупорядоченную пару диагоналей, а в наших рассуждениях мы получали неупорядоченные тройки диагоналей (если учесть, что мы посчитали их дважды), а значит 1 наша тройка содержит по 3 пары. Но вычесть всё равно придётся удвоенное количество, поэтому мы победили!!!
Если бы все точки пересечения диагоналей были различны, для их подсчёта достаточно было бы посчитать общее количество способов выбрать 4 вершины -угольника. Действительно, каждая пара пересекающихся диагоналей даёт нам 4 вершины; с другой стороны, для каждых 4 вершин отрезок, соединяющий первую и третью по часовой стрелке, и отрезок, соединяющий вторую и четвёртую, будут пересекающимися диагоналями (сторонами они не могут быть, так как стороны ни с чем не пересекаются). Количество таких способов составляет
Однако, при таком подсчёте точки, в которых пересекаются больше двух диагоналей, посчитаны несколько раз.
Во-первых, поскольку количество вершин чётно, "длинных"диагоналей (соединяющий противоположные вершины многоугольника) пересекаются в центре многоугольника. Эта точка посчитана
раз, в то время как должна быть посчитана 1 раз. Значит, из вычисленного количества надо вычесть
Во-вторых, для каждой "длинной"диагонали можно взять две симметричные относительно неё диагонали, не проходящие через центр многоугольника. "Длинную"диагональ можно выбрать способами. Для удобства представим себе, что выбранная диагональ расположена вертикально. По каждую сторону от этой диагонали остаётся вершина. Мы выбираем вершину слева от “длинной” диагонали, после чего для выбора вершины справа у нас остаётся варианта: мы не можем выбрать вершину, симметричную относительно "длинной"диагонали (иначе диагональ будет симметрична сама себе) и вершину, симметричную относительно центра, иначе будет "длинной а эти точки пересечения мы уже учли.
Симметричная диагональ выбирается единственным образом. Однако каждую пару диагоналей и мы посчитали дважды, потому что в качестве первой выбранной диагонали могла быть взята любая из них. Таким образом, точку пересечения трёх диагоналей мы умеем искать
способами. В исходной формуле каждая такая точка посчитана трижды, то есть два лишних раза. Значит, мы получаем ещё на
точек меньше.
Вычитая из исходного количества пересечений оба эти выражения мы получаем в точности то, что и требовалось. Если какие-то точки, посчитанные в предыдущем абзаце, на самом деле совпадают, то вычитать надо ещё больше.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!