Турниры в терминах графов и не только (считаем игры и очки)
Ошибка.
Попробуйте повторить позже
В турнире по теннису (где не бывает ничьих) участвовало более спортсменов. Каждый игровой день каждый теннисист принимал участие ровно в одной игре. К завершению турнира каждый сыграл с каждым в точности один раз. Назовём игрока упорным, если он выиграл хотя бы один матч и после первой своей победы ни разу не проигрывал. Остальных игроков назовём неупорными. Верно ли, что игровых дней, когда была встреча между неупорными игроками, больше половины?
Источники:
Подсказка 1
В такой конструкции полезно для начала посмотреть на крайние объекты, например, на последний день турнира. Что во время него произошло?
Подсказка 2
Правильно, в последний день выиграли все упорные, а тогда их не больше половины. Что будет, если их меньше половины?
Подсказка 3
Ну если их меньше половины, то каждый день была встреча между неупорными, это нас устраивает. А вот если их ровно половина, то тогда всего игроков будет 2k, поровну упорных и неупорных, попробуем доказать, что было хотя бы k дней, когда была встреча между неупорными.
Подсказка 4
Заметим, что это равносильно тому же условию, только для упорных, подумайте, почему это так! Конечно же, будем доказывать от противного, при этом исследовать ситуацию для встреч между упорными игроками, потом просто воспользуемся доказанной равносильностью!
Подсказка 5
Поймём, что упорные обязаны играть между собой в одни и те же дни, т.е. провести собственный минитурнир. А когда такое возможно?
Подсказка 6
Конечно, только при чётном количестве упорных игроков. Но теперь вспомним условие, что 2k > 4!
Подсказка 7
В силу чётности k из него следует, что k ≥ 4, тогда в первый день минитурнира выиграло как минимум два упорных игрока. Но ведь они потом встретятся ещё между собой!
Подсказка 8
Тогда кто-то из них выиграет, а другой проиграет, до этого уже выиграв! Это противоречие! Значит, требуемое доказано :)
В последний день все упорные выиграли. Значит, их не больше половины. Если их меньше половины, то каждый день была встреча между неупорными игроками. Остаётся рассмотреть случай, когда количество упорных составляет половину от общего числа игроков Такой турнир длился дней, и нужно доказать, что было хотя бы дней, когда была встреча между неупорными. Это равносильно тому, что было хотя бы дней, когда была встреча между упорными, так как и тех и других — ровно половина (если все упорные играют только с неупорными, то в этих встречах участвуют все неупорные, и обратно).
Предположим противное: пусть встречи между неупорными игроками проходили менее, чем в половине всех дней турнира. Тогда, в силу замечания выше, то же самое можно сказать и про встречи между упорными игроками. Так как всего упорных игроков каждый упорный играл с упорными день. Поэтому единственный возможный вариант, при котором встречи между упорными игроками проходили менее чем в половине дней турнира, — это когда все упорные играют между собой в одни и те же дни. Другими словами можно сказать, что упорные проводят в этот день между собой минитурнир, а такое возможно только если число упорных игроков чётно. Вспомним теперь, что то есть а поскольку — чётное, то Тогда в первый из дней минитурнира играли по крайней мере две пары упорных игроков, а значит было хотя бы два упорных, победивших в этот день. В дальнейшем они должны сыграть между собой, но тогда один из них проиграет после того, как выиграл. Противоречие. Значит, наше предположение неверно, и игровых дней, когда была встреча между неупорными игроками, не менее половины.
Да
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!