Тема 14. Задачи по стереометрии

14.12 Нахождение площади сечения

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела задачи по стереометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#2575

Ребра DA,  DB, DC  пирамиды ABCD  попарно перпендикулярны.                     √ --
AB  = AC  =  BC  = 7  2  .

 

а) Докажите, что пирамида правильная.

б) Найдите площадь сечения BM  N  , если точки M  и N  лежат на ребрах DA  и DC  соответственно, причем DM   : M A =  DN  : N C = 4 : 3  .

Показать ответ и решение

а) Для того, чтобы доказать, что пирамида является правильной, нужно доказать, что в основании пирамиды находится правильный многоугольник, а боковые ребра равны.
PIC
Возьмем за основание △ABC  – он правильный по условию.
Осталось доказать, что DA  =  DC  = DB  .
Рассмотрим △ADB  и △CDB  . Они прямоугольные и равны по катету и гипотенузе. Следовательно, DA  =  DC  . Аналогично рассматривая другие боковые грани, доказываем, что DA  =  DB  . Следовательно, DA  =  DB  = DC  , чтд.

 

б) Заметим, что так как DM   : M A = DN   : N C = 4 : 3  и боковые грани – равные треугольники, то BM   = BN  . PIC
Так как DM   : M A =  DN  : N C = 4 : 3  , то по теореме Фалеса M N  ∥ AC  , также △DM   N  ∼  △DAC  .
Из подобия следует:

M N     DM     4                 4       √ --
-----=  -----= --   →    M N  =  -AC  = 4  2
AC      DA     7                 7
Найдем BM  .
Так как △ADB  прямоугольный и равнобедренный, то                    √ --
DA  =  DB  = AB   :  2  , следовательно, DA  =  7  .
Рассмотрим прямоугольный △DM    B  . Так как         4
DM   =  7DA  = 4  , то         √ -2---2-  √ ---
BM   =    4 + 7  =   65  .
Рассмотрим теперь △BM   N  : PIC
Так как он равнобедренный, то высота BH  , проведенная к основанию, будет также и медианой. Следовательно,
       √ -------  √ ---
BH  =    65 − 8 =   57
Таким образом,
          1                √ ----
S△BMN   = --⋅ BH  ⋅ M N = 2  114
          2
Ответ:

б)  √ ----
2  114

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!