14.12 Нахождение площади сечения
Ошибка.
Попробуйте повторить позже
Ребра пирамиды попарно перпендикулярны. .
а) Докажите, что пирамида правильная.
б) Найдите площадь сечения , если точки и лежат на ребрах и соответственно, причем .
а) Для того, чтобы доказать, что пирамида является правильной, нужно доказать, что в основании
пирамиды находится правильный многоугольник, а боковые ребра равны.
Возьмем за основание – он правильный по условию.
Осталось доказать, что .
Рассмотрим и . Они прямоугольные и равны по катету и гипотенузе. Следовательно,
. Аналогично рассматривая другие боковые грани, доказываем, что .
Следовательно, , чтд.
б) Заметим, что так как и боковые грани – равные треугольники, то
.
Так как , то по теореме Фалеса , также .
Из подобия следует:
Так как прямоугольный и равнобедренный, то , следовательно, .
Рассмотрим прямоугольный . Так как , то .
Рассмотрим теперь :
Так как он равнобедренный, то высота , проведенная к основанию, будет также и медианой. Следовательно,
б)
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!