Тема . Четырёхугольники

Гармонический четырёхугольник

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#37112

Пусть O  — центр описанной около треугольника ABC  окружности, а M  — середина стороны BC.  Окружности, описанные около треугольников AMO  и ABC  вторично пересекаются в точке D.  Докажите, что прямые AD  и AM  симметричны относительно биссектрисы угла BAC.

Показать доказательство

Первое решение.

PIC

Пусть в окружности около ABDC  градусная мера дуги AB  равна 2β  , дуги BD  2α.  Тогда ∠AOD = 2(α +β)  , а ∠OAD  =90∘− α− β.  В окружности около AOMD  равны вписанные углы, поэтому ∠AMD  = 2α+ 2β  и сумма противоположных углов равна 180∘ , поэтому ∠OMD  = 90∘+ α+ β.  В силу того, что OM ⊥ BC  , получаем ∠DMB  = α+ β = ∠BMA  . Вписанный четырёхугольник с таким свойством является гармоническим, а его диагонали содержат симедианы соответствующих им треугольников.

Второе решение.

PIC

Пусть прямая, симметричная AM  относительно биссектрисы, пересекается с описанной окружностью △ABC  в точке E.  Тогда четырёхугольник ABCE  — гармонический, а его диагональ MB  является биссектрисой AME.  Угол AMB  составляет половину от угла AME  и равен полусумме градусных мер дуг AB  и CF  . А дуга CF  равна дуге BE  , так как они опираются на равные углы. Отсюда сам угол AME  равен сумме градусных мер дуг AB  и BE  , то есть градусной мере дуги AE  , которой также равен центральный угол AOE.

Итак, углы AOE  и AME  равны, поэтому точка E  лежит на описанных окружностях △AMO  и △ABC,  следовательно, совпадает с точкой D  из условия задачи.

Третье решение.

PIC

Пусть касательные к описанной окружности треугольника ABC  из точек B  и C  пересекаются в точке P  . Заметим, что эти касательные не могут быть параллельны, ведь тогда ∠A= 90∘ и M = O  , а по условию нам дан треугольник AMO.

Пусть AP  пересекается с описанной около ABC  окружностью в точке E.  По теореме о касательной и секущей

          2
PE ⋅P A= PC

Из прямоугольного △OCP  (∠PCO = 90∘ , как угол между касательной и радиусом), в котором CM  — высота:

   2
P C = PM ⋅PO

ИЗ P E⋅PA = PM ⋅PO  следует, что точка E  лежит на описанной окружности треугольника AMO  , а из построения — на описанной окружности треугольника ABC  . Но окружности не могут пересекаться в трёх различных точках A,D,E  , так что E = D  .

Осталось заметить, что по основной теореме о симедиане прямая AD  симметрична медиане △ABC  относительно его биссектрисы.

Замечание.

Cама задача выражает следующий факт: окружность, проходящая через концы одной диагонали гармонического четырёхугольника и центр описанной около него окружности, делит другую его диагональ пополам.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!