Тема . Четырёхугольники

Гармонический четырёхугольник

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#96591

Продлим чевиану AL  треугольника ABC  до пересечения с описанной окружностью в точке D.  Докажите, что четырёхугольник ABDC  гармонический тогда и только тогда, когда AL  — симедиана.

Показать доказательство

1) Докажем, что если AL  — симедиана, то ABCD  — гармонический.

Пусть AC = b  и AB = c.

PIC

Вспомним следующее свойство симедианы: симедиана делит противоположную сторону в отношении квадратов прилежащих, то есть:

BL-= AB2-= c2
LC   AC2   b2

Обозначим ∠BAL = α,∠LAC = β,∠BLC  =φ.  По теореме синусов для треугольника BAL :

--BL--- = --AB---
sin∠BAL    sin∠BLA

BL--  -c--
sinα = sinφ  (1)

По теореме синусов для треугольника CAL :

--CL---   --AC---  -----AC------  --AC---
sin∠CAL  = sin∠ALC = sin180∘− ∠ALB = sin∠ALB

CL     b
sinβ-= sinφ- (2)

Поделим неравенство (1)  на неравенство (2) :

BL-sinβ = csinφ-
CL sinα   bsinφ

sinβ-= c⋅ CL
sinα   b BL

sinβ   c b2  b
sinα-= b ⋅c2 = c

Заметим, что ∠BCD = ∠BAD  =α  и ∠DBC  = ∠DAC = β  как вписанные, опирающиеся на одну и ту же дугу. Теперь распишем теорему синусов для треугольника BCD :

--CD----  --BD----
sin∠DBC  = sin∠BCD

CD    BD
sinβ-= sinα-

CD- = sinβ
BD   sinα

-CD = b
BD    c

Отсюда

CD-= AC-
BD   AB

То есть четырёхугольник ABCD  гармонический по определению.

_________________________________________________________________________________________________________________________________________________________________________________

2) Предположим, что для гармонического четырёхугольника ABCD  верно, что AD  не является симедианой для треугольника ABC.  Тогда проведём симедиану AD′ треугольника ABC,  где точка D′ лежит на окружности, описанной около ABC.  Из пункта 1 четырёхугольник ABCD ′ — гармонический.

Проведём касательные к окружности, описанной около ABC,  в точках B  и C.  Пусть эти касательные пересекаются в точке K.  Тогда точка D  — это точка пересечения AK  и описанной окружности, так как ABCD  — гармонический, а так же точка D ′ является точкой пересечения AK  и этой окружности, так как ABCD ′ — гармонический. Получается, прямая AK  пересекает окружность в трёх точках: D,D ′ и A,  что невозможно. Получили противоречие, значит, если четырёхугольник ABCD  гармонический, то AD  — симедиана ABC.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!