Тема 8. Взаимосвязь функции и ее производной

8.05 Расчет касания двух графиков

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела взаимосвязь функции и ее производной
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#2395

Прямая y =8(2x− 1)  параллельна касательной к графику функции f(x)= 3x2+ 7x+ 5.  Найдите абсциссу точки касания.

Показать ответ и решение

Так как параллельные прямые имеют равные угловые коэффициенты и прямая имеет вид y = 16x− 8,  то уравнение касательной будет выглядеть как

yk = 16x+ b

Здесь b  — некоторое число. Так как значение производной в точке x0  касания равно угловому коэффициенту касательной, то

 ′                                  3
f (x0)= 16  ⇒   6x0+ 7 =16  ⇔   x0 = 2 = 1,5
Ответ: 1,5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!