Тема . Количество способов, исходов, слагаемых

Рекурренты в комбинаторике и числа Фибоначчи f(n)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела количество способов, исходов, слагаемых
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#78846

Блоха Кузя может совершать прыжки из каждой вершины правильного тетраэдра ABCD  в три соседние вершины, причем выбор этих вершин случайный и равновозможный. Прыгать Кузя начала из вершины A и, совершив 2020 прыжков, опять оказалась в той же вершине. С какой вероятностью это могло произойти?

Источники: Росатом - 2020, отборочный этап (см. olymp.mephi.ru)

Показать ответ и решение

Рассмотрим некоторый промежуточный шаг в движении Кузи. Если она на этом шаге находится в точке A  , то вероятность попасть в A  на следующем шаге равна нулю. Если же она находится в любой из оставшихся точек B,C  или D  ,то вероятность попасть в A  на следующем шаге равна 1
3  , так как из каждой такой точки есть три равновозможных пути, только один из которых приводит в A  . Пусть pk  — вероятность того, что на k− ом шаге блоха находится в точке A  . Соответственно не в точке A  она находится с вероятностью 1− pk  . Тогда на следующем шаге она окажется в A  с вероятностью

            1               1
pk+1 = (1− pk)⋅3 +0 ⋅pk = (1− pk)⋅3

Таким образом, p0 = 1  (так как изначально блоха в точке A  ), p1 =0, p2 = 13,

    (    )
p3 = 1− 1  ⋅ 1= 1 − 1, ...,
        3   3  3   9

Можно заметить закономерность и заключить при n≥ 2

p = 1− 1 +-1 ⋅⋅⋅+ (−-1)n-
 n  3  9  27     3n−1

Видим, что p
n  представляет собой сумму членов геометрической прогрессии со знаменателем равным − 1.
  3  Следовательно,

       1− (−1)n−1   n−1     n
pn = 1⋅----3n1−1-= 3---+n(−−11)
     3   1 +3        4⋅3

            32019+-1
P(A)= p2020 = 4⋅32019

Замечание. Чтобы решение было более обоснованным, формулу для pn  при n≥ 2  можно доказать методом математической индукции.

База:

    (−1)2  1
p2 = 32−-1 = 3

Шаг: пусть формула верна для n= k  , то есть

                    k
pk = 1− 1 +-1 ⋅⋅⋅+ (−k1)−1
    3  9  27     3

Тогда

             1  (   1   1  1-      (−1)k)  1
pk+1 = (1− pk)⋅3 = 1 −3 + 9 − 27 + ⋅⋅⋅− 3k−1 ⋅3 =

                             k+1                  k+1
= 1− -1- +-1- − -1--+⋅⋅⋅+ (−1k−)1- = 1− 1 + 1-⋅⋅⋅+ (−-1)k--
  3  3⋅3  9 ⋅3   27 ⋅3       3   ⋅3   3  9   27       3

то есть формула верна и для n= k+ 1  . А значит, верна и при любых n ≥2.

Ответ:

 32019-+1
 4⋅32019

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!