Тема . Уравнения без логарифмов и тригонометрии

Иррациональные уравнения (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#88712

Решить уравнение

∘ √------√-------√--  4√-----  4√-----  4√-
   2x− 1+  3x− 1 − x−  2x− 1−  3x− 1+  x= 0

Источники: САММАТ - 2024, 11.10 (см. sammat.samgtu.ru)

Подсказки к задаче

Подсказка 1

Внимательно посмотрим на уравнение. Есть много похожих слагаемых, что можно сделать для удобства?

Подсказка 2

Замену! Попробуем избавиться от корней и заменить корни 4-й степени. Как можно работать с получившимся уравнением?

Подсказка 3

С одной стороны корень, с другой стоит число, поэтому возведем обе части в квадрат! Что получим после преобразований?

Подсказка 4

0 = c^2 + ab - ac - bc. Остается лишь вспомнить, к чему мы стремимся, когда с одной стороны уравнения стоит 0, и решить его!

Показать ответ и решение

Обозначим корни четвёртых степеней через a,b  и c  , тогда уравнение примет вид:

∘ -2--2---2
  a +b − c = a+b− c

После возведения в квадрат и приведения подобных получаем равенство

0= c2 +ab− ac− bc,

что равносильно

(c− b)(c− a)= 0,

откуда либо c= b  , то есть x = 12  , либо c= a  , откуда x =1  .

При подстановке оба корня подходят (её необходимо сделать, потому что при возведении в квадрат могли появиться лишние корни).

Ответ:

 1 ;1
2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!