Тема . Уравнения без логарифмов и тригонометрии

Иррациональные уравнения (с радикалами)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения без логарифмов и тригонометрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#90448

Пусть x <y  — положительные действительные числа такие, что

√ -  √-        √----  ∘ ----
  x+  y = 4 и   x +2+   y+2 =5.

Найдите x  .

Источники: Турнир Ломоносова - 2024, 11.1 (см. turlom.olimpiada.ru)

Подсказки к задаче

Подсказка 1

Для начала попробуйте в обоих уравнениях в одной части оставить корни от одной и той же переменной и возвести в квадрат.

Подсказка 2

Отлично! Теперь мы можем избавиться от второй переменной, выразив её в обоих уравнениях системы через первую и записав за счёт этого новое равенство для одной переменной.

Подсказка 3

Попробуйте снова перенести одно выражение с корнем в одну часть, а всё остальное в другую и возвести в квадрат. Так мы получим квадратное уравнение относительно корня из x.

Показать ответ и решение

Запишем равенства в следующем виде:

√ -    √ -     ∘ ----    √----
  y = 4− x  и    y+2 =5 − x +2.

Учитывая ограничение x ≤16  возведём их в квадрат и выразим y  :

      √ -2            √----2
y = (4 − x)   и  y = (5− x+ 2)− 2.

Получаем уравнение

(4− √x)2 = (5− √x-+2)2− 2.

После раскрытия полных квадратов и приведения подобных оно примет вид

10√x+-2= 8√x+ 9.

После возведения в квадрат получим уравнение

36x− 144√x − 119= 0.

Решая его как квадратное относительно x  , получаем

√--  17 √--  7
 x1 =-6 , x2 =6,

откуда

x1 = 289,x2 = 49.
    36     36

По ОДЗ оба корня проходят, но при первом корне y < x  , значит он не подходит.

Ответ:

 49
36

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!