Подсчеты в клетчатых задачах
Ошибка.
Попробуйте повторить позже
Игра в “супершахматы” ведётся на доске размером и в ней участвует
различных фигур, каждая из которых ходит по своим
правилам. Известно, что любая фигура с любого места бьет не более
полей (но больше о правилах ничего не сказано, например, если
фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все
фигур так, чтобы ни одна из них не била другую.
Подсказка 1
Часто в задачах, в которых требуется установить существование объекта с данным свойством, необходимо доказать, что общее количество объектов больше, чем количество объектов не обладающих данным свойством.
Подсказка 2
Таким образом, необходимо установить, что что количество расстановок, для которых найдется фигура, которая бьет другую не больше количества всех расстановок. Как найти первое из чисел?
Подсказка 3
Пронумеруем все фигуры числами от 1 до 20. Как можно оценить количество расстановок, при которых i-я фигура, бьет j-ю, для некоторых данных i и j?
Подсказка 4
Их не более, чем 10000⋅20⋅9998 ⋅9997⋅...⋅9981. Как из этого получить оценку на количество количество расстановок, для которых найдется фигура, которая бьет другую? Почему найденное количество меньше количества всех перестановок?
Расстановок, когда -я фигура бьёт
-ю — не более чем
Умножив на число пар получим грубую оценку сверху количества “плохих” расстановок:
Но это число меньше чем количество всех расстановок. (
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!