Подсчеты в клетчатых задачах
Ошибка.
Попробуйте повторить позже
Клетки таблицы окрашены в черный и белый цвета так, что черных клеток на
больше, чем белых. Докажите, что найдется
квадрат
в котором число белых клеток нечетно.
Предположим, что указанного квадрата не существует. Тогда в любом квадрате четное число белых клеток, т. е. если верхние клетки
квадрата окрашены одинаково, то и нижние клетки окрашены одинаково, а если верхние клетки окрашены по-разному, то и нижние
окрашены поразному.
Рассмотрим верхнюю строку таблицы и строку, стоящую под ней. Из сказанного следует, что эти строки либо окрашены одинаково (если их первые клетки окрашены одинаково), либо окрашены так, что под белой клеткой находится черная, а под черной — белая (если их первые клетки окрашены по-разному). Аналогичное утверждение справедливо для любых двух подряд идущих строк.
Заметим, что если мы перекрасим клетки какой-нибудь строки в противоположный цвет, а затем к полученной строке применим ту же операцию, то мы в результате получим исходную строку. Следовательно, в нашей таблице есть только два типа строк: первая строка и строка, полученная из нее перекрашиванием клеток в противоположный цвет.
Пусть в первой строке черных клеток, и строк такого типа в нашей таблице
. Тогда число черных клеток в таблице
равно
а белых клеток —
Их разность по условию равна т. е.
Так как а
— простое число, то последнее уравнение не имеет решений в натуральных
числах.
Получили противоречие.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!