Тема . Клетчатые задачи

Разбиение доски на части

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела клетчатые задачи
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#98017

При каком наибольшем k  можно утверждать, что при любой покраске в чёрный цвет k  клеток белого квадрата 7×7  обязательно останется целиком белый квадрат 3× 3  со сторонами, идущими по линиям сетки?

Показать ответ и решение

Выделим четыре квадрата 3×3  , примыкающие к углам квадрата 7× 7  :

PIC

Эти квадраты не пересекаются, поэтому если закрашено не более трех клеток, то хотя бы один из этих квадратов остался целиком белым. Если же мы закрасим 4 клетки, отмеченные на рисунке серым, то ни одного белого квадрата 3× 3  не останется.

Ответ: 3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!