Тема . Счётная планиметрия

Счёт площадей, рельсы Евклида, теорема о линолеуме

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#65149

Три прямые, параллельные сторонам треугольника ABC  и проходящие через одну точку, отсекают от треугольника ABC  трапеции. Три диагонали этих трапеций, не имеющие общих концов, делят треугольник на семь частей, из которых четыре — треугольники. Докажите, что сумма площадей трёх из этих треугольников, прилегающих к сторонам треугольника ABC,  равна площади четвёртого.

Подсказки к задаче

Подсказка 1

Сразу хочется найти, для каких треугольников применить теорему о линолеуме...

Подсказка 2

Подойдут как раз три треугольника, которые содержат по два из наших трех маленьких треугольничков, но мы ничего не знаем про их сумму площадей...

Подсказка 3

На самом деле, площади этих треугольников очень хорошо выражаются через площадь самого треугольника, и нам остается доказать одно выражение.....

Подсказка 4

Оно будет вида A1B/BC + B1C/CA + C1A/AB = 1 если обозначать точки на картинке

Подсказка 5

Возможно, с помощью наших параллельных прямых, можно заменить отношения в этом выражении на какие-то еще?..

Подсказка 6

Для этого стоит провести чевианы через точку пересечения трех прямых, параллельных сторонам)

Подсказка 7

Полученное выражение может напоминать вам одну теоремку! Либо попробуйте вывести это отдельное утверждение самостоятельно с использованием теоремы Менелая

Показать доказательство

Рассмотрим картинку, соответствующую условию задачи с точностью до переобозначений:

PIC

Заметим, что треугольники AA1B,BB1C,CC1A  с их внутренними точками образуют такое покрытие внутренности исходного треугольника, что каждая его точка принадлежит не более, чем двум из трёх кусков покрытия. Тогда по лемме о линолеуме площадь непокрытой части – SGOD  – равна сумме площадей покрытых дважды областей – SAC1G+ SBA1O +SCB1D  – тогда и только тогда, когда общая площадь покрытия – SAA1B +SBB1C + SCC1A  – равна площади всего треугольника ABC,  которую мы обозначим неизвестной S.

Первое решение.

Рассмотрим треугольник ABA1 :  двигая точку A1  вдоль “оранжевой” прямой площадь треугольника остаётся постоянной по теореме о перетягивании площади по рельсам Евклида (пользуемся тем, что оранжевая” прямая параллельна основанию треугольника). Тогда передвинем точку A1  в точку P.  Аналогично поступим с точками B1  и C1.  В итоге

S    + S    + S    = S    +S    + S   = S
 AA1B   BB1C   CC1A   APB   BPC    APC

Итак, сумма площадей “синих” треугольников, образованных на пересечениях треугольников ABA1,BCB1  и CAC1,  равна площади не замощённого участка треугольника ABC  (зелёного треугольника) по теореме о паркете.

Второе решение.

По теореме об отношении площадей треугольников с общей высотой SAA1B + SBB1C + SCC1A =S ⋅ A1B-+ S⋅ B1C +S ⋅ C1A.
                        BC      AC     AB  Ясно, что эта сумма равна S  тогда и только тогда, когда

A1B- B1C-  C1A-
BC  + AC + AB  = 1

Здесь уже настало время пользоваться природой появления точек A1,B1,C1  от точки P.  Обозначим точки пересечения чевиан, пересекающихся в точке P,  со сторонами треугольника за  ′  ′ ′
A ,B,C .

PIC

Тогда по теореме Фалеса искомое соотношение эквивалентно

PC-′ P-A′  PB′-
C′C +A ′A + B′B =1

Это соотношение для конкурентных чевиан известно как теорема Жергонна. Доказать её можно так: площади треугольников AP B  и ACB  относятся как высоты из вершин P  и C  соответственно, потому что сторона AB  общая, а высоты из этих вершин относятся так же, как и PC′ к CC ′ по обобщённой теореме Фалеса. Проделав аналогичные рассуждения с точностью до переобозначений,

   ′    ′     ′
PC-C′C-+ PAA′A + PB-B′B-= SSAPB-+ SSBPC-+ SSAPC-=
                  ACB    BAC    ABC

= SAPB-+SBPC-+-SAPC = SABC-= 1
        SABC         SABC

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!