Тема . Счётная планиметрия

Счёт площадей, рельсы Евклида, теорема о линолеуме

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#85553

В остроугольном треугольнике PVG  обозначили точку пересечения высот через H  , центр описанной окружности через O  . Площади треугольников OHP  и OHV  равны 5 и 3 соответственно. Найдите площадь треугольника OHG  .

Источники: ПВГ - 2024, 11.4 (см. pvg.mk.ru)

Подсказки к задаче

Подсказка 1

Итак, на нашем чертеже треугольник и две точки внутри него. Как-то пусто, и совсем не понятно, что с такой картинкой делать. Значит нужно придумать, что еще тут построить. Может быть, отметить какую-нибудь точку так, чтобы о прямой, соединяющей эту точку и центр описанной окружности нам было что-то известно. Что это может быть за точка?

Подсказка 2

Пусть М - середина стороны PV. Тогда ОМ перпендикулярна PV, а GM - медиана треугольника. Пусть GM пересекает отрезок ОН в точке Т. Вот, теперь чертеж выглядит поинтереснее! Рассмотрите его и найдите подобие.

Подсказка 3

Итак, треугольники GHT и OTM подобны. Но с каким коэффициентом? Чтобы это узнать, нужно заметить, что Н - это не абы что, а ортоцентр, и вспомнить его свойства.

Подсказка 4

По свойству ортоцентра GH = 2*OM. Получается, GT : TM = 2 : 1. Как тогда относятся друг к другу площади треугольников GHO и OHM?

Подсказка 5

Так же как 2 к 1! Теперь выразите площадь OHM через известные нам площади. Тут самое главное не забыть рассмотреть случаи!

Показать ответ и решение

В точке H  пересекаются три высоты треугольника. Так как O  — центр описанной окружности, то в точке O  пересекаются серединные перпендикуляры треугольника. Пусть точка M  — середина стороны PV  , тогда GM  медиана. Точка T  — точка пересечения медианы и прямой OH  .

PIC

Треугольники MOT  и GHT  подобны (следует из параллельности прямых MO  и HG  , которые обе перпендикулярны прямой P V  ). Так как HG = 2⋅MO  (этот факт из школьной геометрии хорошо известен как "свойство ортоцентра"), то коэффициент подобия равен 2. Значит, GT :TM = 2:1  , то есть медиана GM  делится точкой T  в отношении 2:1  . Это означает, что T  - точка пересечения медиан треугольника P VG  . Поэтому площадь △OHG  в 2 раза больше площади △OHM  .

Так как M  — середина P V  , то

S      = S△OHP-+S△OHV--⇒ S     = S     + S    .
 △OHM          2          △OHG    △OHP    △OHV

Здесь ошибкой был бы вывод о том, что, значит, S      =5+ 3= 8
 △OHG  . Дело в том, что выше доказано, что одна из этих трех площадей является суммой двух других. Но какая именно, зависит от рисунка, который мы сделаем. Важно, где прямая OH  пересекает стороны треугольника. Если треугольник P VG  правильный, то точки O  и H  совпадают и указанные в условии задачи три площади вырождаются (это здесь невозможно, так как дано, что площади равны 3 и 5). Если прямая OH  проходит через любую вершину треугольника, то тогда одна из трех площадей равна 0 , а две другие — ненулевые, но равны между собой (тоже не наш случай). Если же прямая OH  пересекает две стороны (рассмотренный выше случай), то мы доказали, что одна из этих трех площадей (в одном случае это OHG  , в другом — OHP,  в третьем — OHV )  является суммой двух других.

Поэтому получаем либо 5+ 3= x  (то есть x= 8  ), либо 3+x =5  (то есть x =2  ), либо 5 +x =3  (что невозможно).

Ответ: 8 или 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!