Вписанная сфера
Ошибка.
Попробуйте повторить позже
Дана правильная призма с основанием
Плоскости
и
перпендикулярны
и проходят через вершины
и
соответственно. Пусть
и
соответственно — точки пересечения плоскостей
и
с диагональю
, при этом
(b) Пусть дополнительно известно, что некоторая сфера радиуса 3 касается всех боковых граней призмы, а также плоскостей и
Найдите отрезок
и объём призмы
(a) Из соображений симметрии (относительно плоскости ) плоскость
проходит через точку
— и, значит, через центр
грани
. Отрезки
и
— проекции параллельных отрезков
и
на прямую
, причём
.
Значит,
.
(b) Поскольку сфера касается всех боковых граней призмы, её проекция на основание есть окружность, вписанная в это основание.
Значит, . Кроме того,
и
— это две параллельные плоскости, касающиеся сферы, поэтому расстояние
между ними равно диаметру сферы, то есть 6. Так как
, этим расстоянием является отрезок
, поэтому
.
Обозначим . Поскольку
— высота прямоугольного треугольника
, то
и, следовательно, . Тогда
и
Получаем уравнение
поскольку
.
Наконец, высота призмы равна
А объём призмы равен
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!