Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#33590

Сфера с центром O  вписана в трёхгранный угол с вершиной S  и касается его граней в точках K,L,M  (все плоские углы трёхгранного угла различны). Найдите угол KSO  и площадь сечения данного трёхгранного угла плоскостью KLM  , если известно, что площади сечений трёхгранного угла плоскостями, касающимися сферы и перпендикулярными прямой SO  , равны 1  и 4  .

Подсказки к задаче

Подсказка 1

Раз нас просят отыскать ∠KSO будет рассматривать плоскость (KSO), а, точнее, ту её часть, что заключена между прямыми SO и SK. Нам понадобятся точки P и Q — точки касания сферы с плоскостями, перпендикулярными SO. Пусть при это SP < SQ. Отметьте всё, что можно выразить через радиус сферы.

Подсказка 2

Рассмотрим отрезки, заключенные между точками пересечения SK и SO с касательными к сфере плоскостями. Если мы знаем отношение площадей сечений, то что можно сказать об отношении этих отрезков? (Вспомните: площади подобных треугольников относятся как квадрат коэффициента подобия). Пользуясь этим отношением вы сможете найти связь между SP и радиусом сферы.

Подсказка 3

Помните: радиус сферы, проведённый в точку касания, перпендикулярен касательной плоскости. А значит, мы можем найти синус ∠KSO, ведь всё нужное для этого мы выразили через радиус сферы.

Подсказка 4

Что можно сказать про (KLM) и SO? Проведите высоты к SO в △KSO, △MSO и △LSO — это поможет нам сделать важный вывод!

Подсказка 5

После того, как мы заметили перпендикулярность (KLM) и SO, можно поработать с подобными прямоугольными треугольниками: узнав отношение отрезков параллельных секущих плоскостей, заключённых между точками их пересечения с SO и SK, мы сможем сделать вывод и об отношениях площадей сечения!

Показать ответ и решение

Обозначим точки пересечения прямой SO  со сферой через P  и Q  (точка P  лежит на отрезке SO  , а Q  — вне него). Пусть радиус сферы равен r  . Треугольники OKS, OLS  и OMS  прямоугольные (углы при вершинах K, L,M  прямые, так как касательные перпендикулярны радиусам, проведённым в точку касания). Эти треугольники равны по катету и гипотенузе (OK  =OL = OM = R,SO  — общая), следовательно, ∠KSO = ∠LSO = ∠MSO (  пусть ∠KSO = α,SO= x)  . Высоты, опущенные из точек K,L,M  на гипотенузу  SO  , paвны, а их основания — одна и та же точка H  , лежащая в плоскости KLM  (назовём эту плоскость τ)  . Пусть β  и γ  касательные плоскости к сфере, проходящие через точки P  и Q  , а E  и F  — точки пересечения этих плоскостей с прямой SK  . По условию площади сечений трёхгранного угла этими плоскостями равны соответственно S1 =1  и S2 =4  . Рассмотрим сечение трехгранного угла и сферы плоскостью SKO  (см. рис. и обозначения на нем). Так как SH ⊥HK  и SH ⊥ HL  , то τ ⊥ SH  . Тогда сечения трёхгранного угла плоскостями τ,β  и γ  — подобные треугольники, плоскости которых параллельны (все они перпендикулярны SO )  .

Если Σ  — площадь треугольника, получающегося в сечении трёхгранного угла плоскостью KLM  , то из подобия Σ :S1 :S2 = KH2 :EP2 :FQ2.  Следовательно,          √-- √--
EP :FQ =  S1 : S2.  Тогда √ -- √--
  S1 : S2 = SP :SQ= (x− r) :(x+ r),  откуда     √-- √--
r= x√SS22−+√SS11,  a          √-- √--
sinα = rx = √SS22−+√SS11 = 13.  Отсюда ∠KSO  =arcsin13.

PIC

Далее, OH = rsinα,SH = SO− OH = -r- − rsin α,SP = SO− r=-r- − r.
                        sinα                   sinα  Значит, Σ :S1 = KH2 :EP2 =SH2 :SP2 = (-1 − sin α)2 :(-1 − 1)2 = (1+sinα)2 = 16,
                            sinα         sinα                  9  откуда Σ= 16.
    9

Ответ:

 ∠KSO =arcsin1,S = 16
            3    9

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!