Вписанная сфера
Ошибка.
Попробуйте повторить позже
Основание треугольной пирамиды — правильный треугольник
Объём пирамиды равен
, а её высота, проведённая из
вершины
, равна
Точка
— середина ребра
Известно, что радиусы сфер, вписанных в пирамиды
и
, равны
между собой.
(a) Найдите возможные значения угла между гранями пирамиды при ребре
(b) Найдите все возможные значения длины ребра , если дополнительно известно, что грани
и
взаимно
перпендикулярны.
Источники:
Пункт а), подсказка 1
Как можно применить данные о равенстве радиусов сфер, вписанных в пирамиды? В условиях, когда известен объём, хочется подумать о формуле, связывающей радиус с объёмом и площадью поверхности. (Если такая вам неизвестна, попробуйте её вывести по аналогии с планиметрическим S = p*r)
Пункт а), подсказка 2
Итак, что мы видим: одна грань у этих пирамид общая, две другие попарно равновелики, так как М является серединой CD. Что в этом случае можно сказать об оставшейся паре граней?
Пункт а), подсказка 3
У нас появились равные по площади грани! Известный объём пирамиды и высота к одной из них помогут нам отыскать площади этих граней. Нетрудные вычисления откроют нам ещё и длину высоты грани ADB.
Пункт а), подсказка 4
Проведите высоту к основанию АВС Данной пирамиды и её апофему в грани ADB. Какая теорема поможет нам достроить имеющуюся конструкцию до линейного угла двугранного угла? Мы знаем достаточно, чтобы найти триг. функцию от искомого угла! Не забывайте только — нам никто не говорил что искомый уголочек будет острым ;)
Пункт б), подсказка 1
Какой вывод о расположении высоты пирамиды мы можем сделать из перпендикулярности двух её граней?
Пункт б), подсказка 3
Осталось снова применить теорему Пифагора и искомое ребро у нас в кармане :) Только будьте внимательны: совсем не обязательно высота нашей пирамиды будет падать именно на ребро, а не на его продолжение!
Воспользуемся формулой радиуса вписанной сферы , где
— объём, а
— площадь поверхности пирамиды. Объёмы пирамид
и
равны (грань
общая, а вершины
и
равноудалены от плоскости
); кроме того
и
(медиана делит площадь треугольника пополам). Значит, равенство сфер, вписанных в пирамиды
и
, эквивалентно условию
или равенству высот, проведённых к стороне
в треугольниках
и
.
Пусть высота пирамиды, а
высота в треугольнике
. Объём пирамиды равен
, а её высота из вершины
равна 3,
то есть
. Значит, площадь основания пирамиды равна
. Тогда сторона основания
, а высота треугольника
равна 5.
Значит,
также равно 5. Из прямоугольного треугольника
находим
, т.е. точка
находится на
расстоянии 4 от прямой
(
лежит на одной из двух прямых, параллельных
, на расстоянии 4 от неё). Тем самым, угол между
гранями при ребре
равен
.
Из условия, что грани и
взаимно перпендикулярны, следует, что
лежит на
. Так как
, то
.
Значит
или
. Тогда
или
.
или
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!