Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела сферы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63890

Дана правильная треугольная пирамида. Известно, что центр сферы, описанной около этой пирамиды, равноудалён от боковых рёбер и от плоскости основания пирамиды. Найдите радиус сферы, вписанной в эту пирамиду, если длина ребра её основания равна 12.

Показать ответ и решение

Пусть ABC  — основание пирамиды, S  — вершина, H  — центр треугольника ABC,  M  — середина AB,O
     1  — центр описанной сферы, O2  — центр вписанной сферы. Поскольку точка O1  равноудалена от AS  и ABC,AO1  — биссектриса треугольника ASH.  Стало быть,                          ∘
∠HAO1 = ∠SAO1 = ∠ASO1 =30 .

PIC

Поскольку AB = 12,  имеем       √-
AH = 4 3,  откуда O1H =4,  O1A = O1S = 8.  Для треугольника MSH  имеем              √-
SH =12,MH = 2 3,  откуда       √--
SM = 2 39.  Поскольку MO2  — биссектриса,                       √--
SO2 = HO2 ⋅SM∕MH =HO2  13.  Стало быть,        √ --
HO2 (1 +  13)=  SH = 12,  откуда       √--
HO2 =  13− 1.

Ответ:

 √13-− 1

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!