Вписанная сфера
Ошибка.
Попробуйте повторить позже
Радиус сферы, вписанной в правильную треугольную пирамиду, равен . Найдите величину двугранного угла при боковом ребре этой пирамиды, при котором максимален объём другой пирамиды, вершинами которой служат центр вписанной в исходную пирамиду сферы и точки касания этой сферы с боковыми гранями исходной пирамиды.
Источники:
Подсказка 1
Для начала хочется понять, что хорошего мы можем сказать о маленькой пирамидке?
Подсказка 2
Она правильная! А как должны соотноситься между собой длины стороны основания и боковой стороны, чтобы объем правильной пирамиды был максимален?
Подсказка 3
Если а – сторона основания, а b – длина боковой стороны, мы без проблем можем записать выражение для объема пирамиды, рассмотреть это как функцию от а и через производную найти максимум! Какой в этом случае будет угол при вершине маленькой пирамиды? А чему равен искомый угол?
Пусть у некоторой правильной пирамиды с основанием известно боковое ребро Давайте посчитаем, при какой длине стороны основания пирамида будет обладать наибольшим объемом.
Пусть — центр основания
Теперь это функция от Возьмем производную по Она зануляется при и в этой точке производная меняет свой знак с + на -. Значит, это точка максимума и объем максимальный при .
Вернёмся к задаче. Пирамида, вершинами которой служат точки касания и центр сферы, является правильной треугольной пирамидой с ребром . Значит, чтобы объем был максимальным, нужно добиться того, чтобы сторона ее основания была .
Пусть исходная пирамида с основанием — центр вписанной сферы. точки касания сферы с плоскостями , , соответственно.
Из точек и проведем перпендикуляры к , в силу симметрии они попадут в одну точку .
По доказанному ранее и при этом . Значит, , но тогда угол прямой, а его нам и нужно было найти.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!