Вписанная сфера
Ошибка.
Попробуйте повторить позже
В пирамиде каждый из углов
и
равен
, угол
прямой, ребро
равно
. Центр
сферы, вписанной в пирамиду
, лежит на высоте
. Найти
и радиус сферы, вписанной в пирамиду
Источники:
Подсказка 1
Центр нашей сферы лежит на высоте, а уголки ∠ASB и ∠ASC равны. Не наблюдается ли тут какая-нибудь симметрия...
Подсказка 2
Действительно, наша картинка симметрична относительно плоскости SAD! Тогда SB=SC=a и AB=AC. Хочется доказать, что D будет центром вписанной окружности треугольника △ABC. Пускай A₁, B₁, C₁- основания перпендикуляров, опущенных из точки D на ВС, AC и AB соответственно. Что мы можем сказать про треугольники △SC₁D, △SB₁D и △SA₁D?
Подсказка 3
Они равны, ведь имеют общий катет SD, а острые уголочки, прилежащие к нему, равны в силу того, что SD содержит центр вписанной сферы. Тогда и высоты SC₁, SB₁ и SA₁ равны между собой ⇒ SC₁=SB₁=SA₁=a/√2. Как нам найти SB...
Подсказка 4
В треугольнике △ASB высота SC₁ равна a/√2, а сторона SB=a ⇒ ∠SBA=45°. Тогда в треугольнике △SAB мы знаем два угла и сторону ⇒ можем найти остальные стороны. Получается, что SA=a*√5/3 и AB=a*2√2/3. Т.к. SB=SC ⇒ A₁- середина BC ⇒ AA₁- высота △ABC. Если бы мы знали DA₁, мы бы легко нашли SD...
Подсказка 5
Т.к. DA₁ равен радиусу вписанной окружности треугольника △ABC, то нам необходимо просто посчитать его площадь. Его площадь равна AA₁*BC/2. Тогда r=AA₁*BC/(AB+BC+AC)=a/√14 ⇒ из теоремы Пифагоры для △SDA₁: SD=a*√(3/7). А как будем искать радиус вписанной сферы?
Подсказка 6
Давайте отразим A₁ относительно D и получим точку A₂. Нетрудно заметить, что радиус вписанной окружности треугольника △SA₁A₂ совпадает с радиусом сферы. В этом треугольнике мы уже все знаем, поэтому для вас найти его будет проще простого!
Так как центр вписанной в пирамиду сферы лежит на её высоте , то
образует равные углы с плоскостями
.
Кроме того, из симметрии следует, что
.
Проведём плоскость через перпендикулярно
. Пусть эта плоскость пересекает
в точке
. Аналогично построим точки
. Заметим, что треугольники
равны, так как они прямоугольные, имеют общий катет
, а
углы
равны, как углы между
и плоскостями
. Тогда
и
эти отрезки являются высотами боковых граней пирамиды. Из прямоугольного треугольника
находим его высоту
.
Рассмотрим треугольник . Пусть
. Тогда по теореме косинусов
(1) |
Так как и
то
Полагая получаем уравнение
|
Откуда
Тогда из получаем
. Так как
, то
является серединой
а из равенства
следует, что
является высотой треугольника
причём
.
Пусть — радиус вписанной окружности треугольника
.
Тогда . Из равенства
Тогда
Рассмотрим треугольник . Отразив точку
симметрично
получим точку
. Пусть радиус сферы равен
. Заметим,
что он равен радиусу окружности, вписанной в треугольник
. Тогда
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!