Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тела вращения
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#63895

В правильную треугольную призму ABCA  B C
     1 1 1  вписан шар радиуса √2  . Найдите площадь боковой поверхности вписанного в шар прямого кругового цилиндра, основание которого лежит в плоскости, проходящей через точку A  и середины рёбер BB1  и CC1.

Источники: Ломоносов-2014, 11.7 (см. olymp.msu.ru)

Подсказки к задаче

Подсказка 1

Давайте аккуратно нарисуем рисунок, попробуем выразить радиус основания цилиндра через его высоту и радиус сферы. Обозначим за D, D₁, M и N середины ребер ВС, В₁С₁, ВВ₁ и СС₁, Р – точка пересечения MN и DD₁. Как имеющиеся на рисунке отрезки связаны с радиусом сферы?

Подсказка 2

Давайте спроецируем центр сферы на плоскость основания цилиндра, нельзя ли теперь выделить на рисунке какую-нибудь пару подобных треугольников, которая поможет нам связать высоту цилиндра и радиус сферы?

Показать ответ и решение

Обозначим через r  радиус шара, а через D,D ,M
   1  и N  — середины рёбер BC,B C ,BB
     11    1  и CC
   1  соответственно. Плоскость AA  D
   1 1  есть центральное сечение шара. Пусть h  — высота цилиндра, тогда радиус его основания равен     ∘-2--h2
R =  r − 4  . Пусть P  — точка пересечения отрезков DD1  и MN  . Справедливы соотношения OP = r,P D= r,AD =3r  , где O− центр шара. Если O1  — проекция точки O  на основание цилиндра, то из подобия прямоугольных треугольников APD  и OO1P  получаем

OO1   PD
-OP-= AP-

OOr1-= √--r2--2-= √1-
       9r + r    10

Тогда

      √ --            √--
OO  = r-10,h =2 ⋅OO  = r-10
  1    10          1    5

Значит, R= 3r√10
     10  . Площадь боковой поверхности

             6πr2
Sбок. = 2πRh=  5
Ответ:

 12π
 5

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!