Конус
Ошибка.
Попробуйте повторить позже
На плоскости основания конуса с высотой, равной радиусу основания, дана точка (вне конуса), удалённая от окружности основания на расстояние, равное двум радиусам основания. Найдите угол между касательными плоскостями к боковой поверхности конуса, проходящими через данную точку.
Источники:
Пусть центр основания радиуса — точка , точка рядом , а — вершина конуса. Пусть также пересекает окружность в . Касательные плоскости содержат касательные из к окружности, пусть это и . Легко видеть, что и и есть искомые плоскости, проведём в этих треугольниках высоты к , которые в силу симметрии упадут в одну точку . Тогда наша задача сводится к поиску .
Итак, будем искать отрезки и . По теореме об отрезках касательной и секущей
Здесь мы просто посчитали площадь прямоугольного треугольника двумя способами. Теперь заметим, что , поскольку две прямые ей перпендикулярны, откуда , то есть , как прямоугольные с общим углом. Имеем
В итоге .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!