Конус
Ошибка.
Попробуйте повторить позже
Угол при вершине в осевом сечении конуса равен . Снаружи этого конуса расположены 11 шаров радиуса 3, каждый из которых касается двух соседних шаров, боковой поверхности конуса и плоскости его основания. Найдите радиус основания конуса.
Источники:
Подсказка 1
Давайте сначала рассмотрим расположение любого шара и конуса в плоскости, перпендикулярной рисунку.
Подсказка 2
У нас есть треугольник, которого касается окружность известного радиуса, вписанная во внешний угол при основании треугольника. Счёт за Вами... Напоминаем, окружность, вписанная в угол, лежит на его биссектрисе
Подсказка 3
Теперь давайте поймем как расположены все шары снаружи. Они касаются друг друга, поверхности конуса и плоскости его основания, причем все расположены на одинаковом расстоянии от центра основания конуса!
Подсказка 4
То есть точки касания шаров с плоскостью основания конуса являются вершина правильного 11-угольника со стороной, равной удвоенному радиусу шаров(так как они касаются друг друга и длина = 2 радиуса)...
Подсказка 5
Теперь нам известны расстояние от центра основания до точки касания шаров с плоскостью основания(радиус 11-угольника) и расстояние от этой точки касания до ближайшей вершины треугольника в плоскости рисунка, тогда искомый радиус основания = радиус 11-угольника - последнее расстояние
Пусть — центр окружности основания конуса, радиуса - центр одного из шаров радиуса — точка касания этого шара с плоскостью основания, — точка касания соседнего шара с плоскостью основания конуса. Значит, из треугольника можем получить
Так как каждый шар касается двух соседних, то точки касания этих шаров с плоскостью основания конуса расположены в вершинах правильного 11-угольника вписанного в окружность с центром в точке радиуса и стороной, равной Поэтому
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!