Площадь ортогональной проекции
Ошибка.
Попробуйте повторить позже
Докажите, что если все плоские углы при некоторой вершине тетраэдра прямые, то квадрат площади грани, противолежащей этой вершине, равен сумме квадратов площадей всех остальных граней тетраэдра.
[Пространственный аналог теоремы Пифагора для прямого тетраэдра]
Пусть это углы при вершине в тетраэдре
. То есть нужно доказать, что
Пусть . Отсюда
(по сути это сумма квадратов проекций
на “оси
координат” — стороны тетраэдра, делённая на само
, что равно единице из теоремы Пифагора).
По теореме о площади ортогональной проекции Выписывая аналогичные равенства для оставшихся граней,
получаем нужное соотношение
что и требовалось доказать
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!