Квадратные трёхчлены на устном туре Турнира Городов
Ошибка.
Попробуйте повторить позже
В множестве выбрали подмножество
Оказалось, что никакой квадратный трехчлен, все три коэффициента которого
принадлежат
не имеет действительных корней. Какое наибольшее число элементов могло быть в
Источники:
Если и
то дискриминант трехчлена
неотрицательный, значит, у него есть корни. Таким образом, множество
не содержит чисел, отличающихся хотя бы вдвое.
Покажем, что если в отношение любых двух чисел меньше
то все трехчлены с коэффициентами из
не имеют корней. Пусть
— наибольшее из чисел в
а
— наименьшее. Тогда дискриминант трехчлена с коэффициентами из
не больше
Очевидно, что максимальное подмножество в котором отношение любых двух чисел меньше
имеет мощность
Подходит, например,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!